如圖,△ABC是等邊三角形,⊙O與AC相切于A點,與BC交于E點,與AB的延長線交于D點.已知BE=6,CE=4,則BD的長為


  1. A.
    10
  2. B.
    9
  3. C.
    25
  4. D.
    35
B
分析:連接AE,延長EB與圓交于點F;可得△AEC∽△FAC,易得CA2=CE•CF;解可得CF=25;故BF=15;再根據(jù)相交弦定理可得:AB•BD=BE•BF;解可得:BD=9.
解答:解:連接AE,延長EB與圓交于點F,
∵⊙O與AC相切于A點,
∵∠CAE=∠AFC,∠C=∠C,
∴△AEC∽△FAC,
∴CA2=CE•CF,
又△ABC是等邊三角形,
∴CA=AB=BC=CE+BE=10,CE=4,
∴4CF=100,
∴CF=25,
∴BF=15,
∵AB•BD=BE•BF,
∴BD=9.
故選B.
點評:本題考查等邊三角形的性質,其三邊相等,三個內角相等,均為60°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網(wǎng)∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉后到達△ACE的位置,那么旋轉角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習冊答案