精英家教網 > 初中數學 > 題目詳情
23、(1)如圖1,在△ABC中,繞點C旋轉180°后,得到△CA′B′請先畫出變換后的圖形,寫出下列結論正確的序號是
①②③④

①△ABC≌△A′B′C;
②線段AB繞C點旋轉180°后,得到線段A′B′;
③A′B′∥AB;
④C是線段BB′的中點.
在(1)的啟發(fā)下解答下面問題:
(2)如圖2,在△ABC中,∠BAC=120°,D是BC的中點,射線DF交BA于E,交CA的延長線于F,請猜想∠F等于多少度時,BE=CF?(直接寫出結果,不證明)
(3)如圖3,在△ABC中,如果∠BAC≠120°,而(2)中的其他條件不變,若BE=CF的結論仍然成立,那么∠BAC與∠F滿足什么數量關系(等式表示)并加以證明.
分析:(1)通過旋轉的性質可知①②③④正確;
(2)通過正確作圖,使BE=CF,然后進行測量即可進行猜想;
(3)通過旋轉的方法,作出輔助線,可利用三角形全等或旋轉的性質得到相等的線段,把關系轉化到一個三角形中即可得到需要的條件.
解答:解:
(1)根據旋轉的性質,知①②③④都是正確的.

(2)60°.

(3)等量關系:∠BAC=2∠F.
作△FCD關于點D的中心對稱三角形DBF′,則
∠F′=∠F,FC=BF′=BE,∠F′=∠F=∠BED=∠FEA.
∴∠BAC=2∠F.
點評:本題考查旋轉的性質和中心對稱的特點.
旋轉變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.要注意中心對稱是旋轉的一種特殊情況.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,要在一個圓形工件通過畫直徑來確定圓心,下列四種工具和確定方法不能找到圓心的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8)DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求AC的長;
(3)在圖2中,點G是x軸正半軸上一點,且0<OG<4,過G作EF垂直于x軸,分別交y1、y2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②線段EF長有可能等于3嗎?若能,請求出相應的x的值,若不能請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在一條筆直地公路上有A、B、C三地,B、C兩地相距150km,甲、乙兩輛汽車分別從B、C兩地同時出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2與行駛時間x(h)的函數圖象如圖2所示.(乙:折線E-M-P)

(1)請在圖1中標出A地的大致位置;
(2)圖2中,點M的坐標是
(1.2,0)
(1.2,0)
,該點的實際意義是
點M表示乙車1.2小時到達A地
點M表示乙車1.2小時到達A地
;
(3)求甲車到A地的距離y1與行駛時間x(h)的函數關系式,直接寫出乙車到A地的距離y2與行駛時間x(h)的函數關系式,并在圖2中補全甲車的函數圖象;
(4)A地設有指揮中心,指揮中心與兩車配有對講機,兩部對講機在15km之內(含15km)時能夠互相通話,直接寫出兩車可以同時與指揮中心用對講機通話的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在△ABC中,∠ACB=2∠B,∠BAC的平分線AO交BC于點D,點H為AO上一動點,過點H作直線l⊥AO于H,分別交直線AB、AC、BC于點N、E、M.
(1)當直線l經過點C時(如圖2),證明:BN=CD;
(2)當M是BC中點時,寫出CE和CD之間的等量關系,并加以證明;
(3)請直接寫出BN、CE、CD之間的等量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在一個7×7的正方形ABCD網格中,實線將它分割成5塊,再把這5塊拼成如精英家教網圖2,中間會出現一個小孔,如果正方形ABCD的邊長為a,試計算圖2中小孔的面積.

查看答案和解析>>

同步練習冊答案