精英家教網 > 初中數學 > 題目詳情
已知關于x的一元二次方程x2+(2m-3)x+m2=0的兩個不相等的實數根α、β滿足,求m的值.
【答案】分析:首先根據根的判別式求出m的取值范圍,利用根與系數的關系可以求得方程的根的和與積,將轉化為關于m的方程,求出m的值并檢驗.
解答:解:由判別式大于零,
得(2m-3)2-4m2>0,
解得m<

∴α+β=αβ.
又α+β=-(2m-3),αβ=m2
代入上式得3-2m=m2
解之得m1=-3,m2=1.
∵m2=1>,故舍去.
∴m=-3.
點評:本題主要考查一元二次方程根的判別式,根與系數的關系的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知關于x的一元二次x2+(2k-3)x+k2=0的兩個實數根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數學 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習冊答案