【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

【答案】證明:(1)如圖1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:連接GC、BG,
∵四邊形ABCD為平行四邊形,∠ABC=90°,
∴四邊形ABCD為矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰直角三角形,
∵G為EF中點(diǎn),
∴EG=CG=FG,CG⊥EF,
∵△ABE為等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG與△DCG中,
,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB為等腰直角三角形,
∴∠BDG=45°.
(3)解:延長(zhǎng)AB、FG交于H,連接HD.
∵AD∥GF,AB∥DF,
∴四邊形AHFD為平行四邊形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF為等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四邊形AHFD為菱形
∴△ADH,△DHF為全等的等邊三角形
∴DH=DF,∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH,
∴BH=GF
在△BHD與△GFD中,
,
∴△BHD≌△GFD,
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°

【解析】(1)根據(jù)AF平分∠BAD,可得∠BAF=∠DAF,利用四邊形ABCD是平行四邊形,求證∠CEF=∠F即可.
(2)根據(jù)∠ABC=90°,G是EF的中點(diǎn)可直接求得.
(3)分別連接GB、GC,求證四邊形CEGF是平行四邊形,再求證△ECG是等邊三角形.
由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求證△BEG≌△DCG,然后即可求得答案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。
A.在一次抽獎(jiǎng)活動(dòng)中,“中獎(jiǎng)概率是”表示抽獎(jiǎng)100次就一定會(huì)中獎(jiǎng)
B.隨機(jī)拋一枚硬幣,落地后正面一定朝上
C.同時(shí)擲兩枚均勻的骰子,朝上一面的點(diǎn)數(shù)和為6
D.在一副沒有大小王的撲克牌中任意抽一張,抽到的牌是6的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E是AD上任意一點(diǎn),延長(zhǎng)BA到F,使得AF=AE,連接DF:
(1)旋轉(zhuǎn)△ADF可得到哪個(gè)三角形?
(2)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)了多少度?
(3)BE與DF的數(shù)量關(guān)系、位置關(guān)系如何?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線C1y=的頂點(diǎn)為M,與y軸相交于點(diǎn)N,先將拋物線C1沿x軸翻折,再向右平移p個(gè)單位長(zhǎng)度后得到拋物線C2:直線ly=kx+b經(jīng)過M,N兩點(diǎn).

(1)結(jié)合圖象,直接寫出不等式x2+6x+2<kx+b的解集;

(2)若拋物線C2的頂點(diǎn)與點(diǎn)M關(guān)于原點(diǎn)對(duì)稱,求p的值及拋物線C2的解析式;

(3)若直線l沿y軸向下平移q個(gè)單位長(zhǎng)度后,與(2)中的拋物線C2存在公共點(diǎn),

求3﹣4q的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】線段CD是由線段AB平移得到的.點(diǎn)A(﹣1,4)的對(duì)應(yīng)點(diǎn)為C(4,7),則點(diǎn)B(﹣4,﹣1)的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為( )
A.(2,9)
B.(5,3)
C.(1,2)
D.(﹣9,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1納米=109米,將50納米用科學(xué)記數(shù)法表示為(

A. 50×109B. 5×109C. 0.5×109D. 5×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5mA處正對(duì)球門踢出(點(diǎn)Ay軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時(shí),離地面的高度為3.5m.

(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?

(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=1是方程x2+mx+3=0的一個(gè)實(shí)數(shù)根,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有五張正面分別標(biāo)有數(shù)字﹣2,﹣1,01,2的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程x2﹣2a﹣1x+aa﹣3=0有兩個(gè)不相等的實(shí)數(shù)根,且以x為自變量的二次函數(shù)y=x2a2+1x﹣a+2的圖象不經(jīng)過點(diǎn)(10)的概率是__

查看答案和解析>>

同步練習(xí)冊(cè)答案