精英家教網 > 初中數學 > 題目詳情
如圖,矩形紙片ABCD的一邊長AB=3,現將紙片沿EF折疊壓平,使C與A重合,已知重疊部分△AEF的面積等于,則矩形紙片ABCD的另一邊BC長   
【答案】分析:首先根據△AEF的面積可計算出AF的長,再設DF=x,由折疊可得D′F=DF=x,在Rt△AD′F中根據勾股定理可得32+x2=(2,解可得到DF的長,進而可以算出AD的長,也就得到了CB的長.
解答:解:∵△AEF的面積等于,
×AB×AF=
×3×AF=,
AF=,
∵四邊形ABCD是矩形,
∴CD=AD′=AB=3,
設DF=x,由折疊可得D′F=DF=x,
在Rt△AD′F中:AD′2+D′F2=AF2,
則32+x2=(2,
解得:x=,
∴BC=AD=+=4.
故答案為:4.
點評:此題主要考查了圖形的翻折變換,以及勾股定理的應用,解決問題的關鍵是計算出DF和AF的長.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別精英家教網把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

科目:初中數學 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數關系式.


查看答案和解析>>

同步練習冊答案