【題目】如圖1,△ABC中,∠C=90°,若AC=6,BC=8,AD平分∠CAB交CB于D.
(1)求CD的長(zhǎng);
(2)如圖2,E是AC上一點(diǎn),連ED,過(guò)D作DE的垂線交AB于F,若ED=DF,求CE的長(zhǎng);
(3)如圖3,在(2)條件下,點(diǎn)P在FD延長(zhǎng)線上,過(guò)F作ED的平行線QF,連PE、PQ,若∠QPF=2∠PED=2α,PQ=5PD,(QF>PF),求QF.
【答案】(1)CD=3;(2)CE=1;(3)QF=.
【解析】
(1)過(guò)點(diǎn)D作DE⊥AB于E,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得CD=DE,利用勾股定理列式求出AB,然后根據(jù)S△ABC=S△ACD+S△ABD列方程求解即可.
(2)過(guò)F作FG⊥BC于G,證明:△CDE≌△GFD,△BGF∽△BCA,即可求解;
(3)過(guò)P作∠QPF的平分線交FQ于G,過(guò)G作GH⊥PQ于H,證明Rt△PFG≌Rt△PHG,△PED∽△GPF,設(shè)PD=x,建立方程求解即可.
(1)如圖1,過(guò)點(diǎn)D作DE⊥AB于E,
∵∠ACB=90°,AD平分∠CAB,
∴CD=DE,
在△ABC中由勾股定理得:AB==10,
∵S△ABC=S△ACD+S△ABD,
∴×AC×BC=×AC×CD+×AB×DE,即×6×8=×6×CD+×10×CD,
解得:CD=3;
(2)如圖2,過(guò)F作FG⊥BC于G,則∠C=∠FGD=90°,
∵DE⊥DF,
∴∠EDF=90°,
∴∠CDE+∠CED=∠CDE+∠FDG=90°,
∴∠CED=∠FDG,
在△CDE與△GFD中
,
∴△CDE≌△GFD(AAS),
∴CE=DG,FG=CD=3,
∵FG∥AC,
∴△BGF∽△BCA,
∴=,
∴BG=4,
∴CE=DG=1;
(3)如圖3,在Rt△CDE中,DE=DF==,
∵PQ=5PD,∴設(shè)PD=x,則PQ=5x,
∴PF=+x,過(guò)P作∠QPF的平分線交FQ于G,過(guò)G作GH⊥PQ于H,
∵FQ∥DE,∴∠QFP=∠EDP=90°,
∴GH=GF,在Rt△PFG與Rt△PHG中,,
∴Rt△PFG≌Rt△PHG(HL),
∴PH=PF=+x,
∵∠QPF=2∠PED=2∠FPG=2α,
∴∠PED=∠FPG,
∴△PED∽△GPF,
∴=,即=,
∴FG=,
∴HG=FG=,
∵QH=PQ﹣PH=4x﹣,
∴QG=,FQ=QG+FG=,
∵△QGH∽△QPF
∴=,即GHFQ=PFQG
∴×=(+x)×,解得:x1=(舍去),x2=,
∴QF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開(kāi)展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤(rùn)為w萬(wàn)元.(毛利潤(rùn)=銷售額﹣生產(chǎn)費(fèi)用)
(1)請(qǐng)直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;
(2)求w與x之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點(diǎn),以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點(diǎn)F,直線AO交⊙O于點(diǎn)E,D.
(1)求證:AO是△CAB的角平分線;
(2)若tan∠D=,AE=2,求AC的長(zhǎng).
(3)在(2)條件下,連接CF交AD于點(diǎn)G,⊙O的半徑為3,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式.
(2)求當(dāng)x為何值時(shí),y1>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(a≠0)的對(duì)稱軸為直線,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與軸交于點(diǎn)B.
(1)若直線經(jīng)過(guò)B,C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使MA+MC的值最小,求點(diǎn)M的坐標(biāo);
(3)設(shè)P為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使ΔBPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,BA=AD=DC,點(diǎn)E在CB延長(zhǎng)線上,BE=AD,連接AC、AE.
⑴ 求證:AE=AC;
⑵ 若AB⊥AC, F是BC的中點(diǎn),試判斷四邊形AFCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.
求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售總利潤(rùn)為y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為16,求△CBC1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值之和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com