如圖,在▱ABCD中,E、F為對(duì)角線AC上兩點(diǎn),且BE∥DF,請(qǐng)從圖中找出一對(duì)全等三角形:  


△ADF≌△BEC解:∵四邊形ABCD是平行四邊形,

∴AD=BC,∠DAC=∠BCA,

∵BE∥DF,

∴∠DFC=∠BEA,

∴∠AFD=∠BEC,

在△ADF與△CEB中,

,

∴△ADF≌△BEC(AAS),


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;

(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE最小,則這個(gè)最小值為( 。

 

A.

B.

2

C.

2

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,拋物線與x軸交于點(diǎn)A(﹣,0)、點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.

(1)求拋物線的函數(shù)關(guān)系式;

(2)點(diǎn)N為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣<t<2),求△ABN的面積S與t的函數(shù)關(guān)系式;

(3)若﹣<t<2且t≠0時(shí)△OPN∽△COB,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,四邊形ABCD內(nèi)接于⊙O,已知∠ADC=140°,則∠AOC的大小是(  )

 

A.

80°

B.

100°

C.

60°

D.

40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,某登山運(yùn)動(dòng)員從營(yíng)地A沿坡角為30°的斜坡AB到達(dá)山頂B,如果AB=2000米,則他實(shí)際上升了  米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來(lái)測(cè)量操場(chǎng)旗桿AB的高度,他們通過(guò)調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,…叫做三角數(shù),它有一定的規(guī)律性.若把第一個(gè)三角數(shù)記為a1,第二個(gè)三角數(shù)記為a2…,第n個(gè)三角數(shù)記為an,計(jì)算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某種商品零售價(jià)經(jīng)過(guò)兩次降價(jià)后的價(jià)格為降價(jià)前的,則平均每次降價(jià)的百分率

為(    )

A.           B.                  C.        D.  

查看答案和解析>>

同步練習(xí)冊(cè)答案