如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn)。

(1)   求證:△ABE∽△ECM;

(2)   探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形,若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由;

(3)   當(dāng)線段AM最短時(shí),求重疊部分的面積。

 

【答案】

(1)見解析

(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,

∴∠AME>∠AEF,

∴AE≠AM;

當(dāng)AE=EM時(shí),則△ABE≌△ECM,

∴CE=AB=5,

∴BE=BC﹣EC=6﹣5=1,

當(dāng)AM=EM時(shí),則∠MAE=∠MEA,

∴∠MAE+∠BAE=∠MEA+∠CEM,

即∠CAB=∠CEA,

又∵∠C=∠C,

∴△CAE∽△CBA,

,

∴CE=

∴BE=6﹣=;

(3)

【解析】(1)由AB=AC得∠B=∠C,由△ABC≌△DEF得∠AEF=∠B,即得△ABE∽△ECM;

(2)由∠AEF=∠B=∠C,且∠AME>∠C,得∠AME>∠AEF,則AE≠AM;當(dāng)AE=EM時(shí),則△ABE≌△ECM,根據(jù)對(duì)應(yīng)邊相等即可求得BE的長(zhǎng);當(dāng)AM=EM時(shí),則∠MAE=∠MEA,即可證得△CAE∽△CBA,根據(jù)對(duì)應(yīng)邊成比例即可求得BE的長(zhǎng);

(3)設(shè)BE=x,由△ABE∽△ECM,根據(jù)對(duì)應(yīng)邊成比例即可表示出CM的長(zhǎng),從而可以表示出AM的長(zhǎng),根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( �。�
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案