【題目】如圖,等邊△ABC中,AB=2,點(diǎn)D是以A為圓心,半徑為1的圓上一動(dòng)點(diǎn),連接CD,取CD的中點(diǎn)E,連接BE,則線段BE的最大值與最小值之和為____

【答案】

【解析】

取點(diǎn)D的特殊位置:當(dāng)點(diǎn)D與點(diǎn)F重合時(shí),當(dāng)點(diǎn)DCA延長(zhǎng)線與圓A的交點(diǎn)時(shí),當(dāng)CD與圓A相切時(shí),確定FE的長(zhǎng)度都是0.5,從而得到點(diǎn)E的運(yùn)動(dòng)軌跡是以點(diǎn)F為圓心,0.5為半徑的圓上運(yùn)動(dòng),故而得到線段BE的最大值與最小值,由此得到答案.

∵△ABC為等邊三角形,AB=2,

AC=AB=2

設(shè)AC交圓A于點(diǎn)F

∵點(diǎn)D是以A為圓心,半徑為1的圓上一動(dòng)點(diǎn),

∴當(dāng)點(diǎn)D與點(diǎn)F重合時(shí),如圖1,FE=0.5

當(dāng)點(diǎn)DCA延長(zhǎng)線與圓A的交點(diǎn)時(shí),如圖2,FE=0.5,

當(dāng)CD與圓A相切時(shí),FE=0.5,

故點(diǎn)E在以點(diǎn)F為圓心,0.5為半徑的圓上運(yùn)動(dòng),

當(dāng)點(diǎn)B、FE三點(diǎn)共線時(shí),線段BE有最大值和最小值,如圖4

AF=1,AC=2,

FC=1,

∴點(diǎn)FAC的中點(diǎn),

∵△ABC是等邊三角形,

BFAC,

BF= ,

線段BE的最大值=,最小值=,

∴線段BE的最大值與最小值之和為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)G是等邊三角形AOB的外心,點(diǎn)A在第一象限,點(diǎn)B坐標(biāo)為(4,0),連結(jié)OG.拋物線yaxx2+1+的頂點(diǎn)為P

1)直接寫(xiě)出點(diǎn)A的坐標(biāo)與拋物線的對(duì)稱(chēng)軸;

2)連結(jié)OP,求當(dāng)∠AOG2AOP時(shí)a的值.

3)如圖②,若拋物線開(kāi)口向上,點(diǎn)C,D分別為拋物線和線段AB上的動(dòng)點(diǎn),以CD為底邊構(gòu)造頂角為120°的等腰三角形CDE(點(diǎn)C,DE成逆時(shí)針順序),連結(jié)GE

①點(diǎn)Qx軸上,當(dāng)四邊形GDQO為平行四邊形時(shí),求GQ的值;

②當(dāng)GE的最小值為1時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BCCD的中點(diǎn),連接AE,BF交于點(diǎn)G,將BCF沿BF對(duì)折,得到BPF,延長(zhǎng)FPBA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是(

AE=BF;AEBFsinBQP=;S四邊形ECFG=2SBGE

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx 2 +2mx4m≠0)的圖象與x軸交于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12

1)求這個(gè)二次函數(shù)的解析式;

2)點(diǎn)D的坐標(biāo)為(-2,1),點(diǎn)P在二次函數(shù)的圖象上,∠ADP為銳角,且tanADP=2,求出點(diǎn)P的橫坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明設(shè)計(jì)了一個(gè)摸球?qū)嶒?yàn):在一個(gè)不透明的箱子里放入4個(gè)相同的小球,球上分別標(biāo)有數(shù)字0,102030,然后從箱子里先后摸出兩個(gè)小球(第一次摸出后不放回).

1)摸出的兩個(gè)小球上所標(biāo)的數(shù)字之和至少為 ,最多為

2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出摸出的兩個(gè)小球上所標(biāo)的數(shù)字之和不低于30的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:每個(gè)內(nèi)角都相等的八邊形叫做等角八邊形.容易知道,等角八邊形的內(nèi)角都等于135°.下面,我們來(lái)研究它的一些性質(zhì)與判定:

1)如圖1,等角八邊形ABCDEFGH中,連結(jié)BF

①請(qǐng)直接寫(xiě)出∠ABF+∠GFB的度數(shù).

②求證:ABEF

③我們把ABEF稱(chēng)為八邊形的一組正對(duì)邊.由②同理可得:BCFG,CDGHDEHA這三組正對(duì)邊也分別平行.請(qǐng)模仿平行四邊形性質(zhì)的學(xué)習(xí)經(jīng)驗(yàn),用一句話概括等角八邊形的這一性質(zhì).

2)如圖2,等角八邊形ABCDEFGH中,如果有ABEF,BCFG,則其余兩組正對(duì)邊CDGH,DEHA分別相等嗎?證明你的結(jié)論.

3)如圖3,八邊形ABCDEFGH中,若四組正對(duì)邊分別平行,則顯然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.請(qǐng)?zhí)骄浚涸摪诉呅沃辽傩枰阎獛讉(gè)內(nèi)角為135°,才能保證它一定是等角八邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱(chēng)為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問(wèn)題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問(wèn)題:

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度.

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)沒(méi)有讀過(guò)四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來(lái)閱讀,則他們選中同一名著的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ABAC2,OBC的距離為OD1,則⊙O的半徑為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生的閱讀能力,我市某校開(kāi)展了“讀好書(shū),助成長(zhǎng)”的活動(dòng),并計(jì)劃購(gòu)置一批圖書(shū),購(gòu)書(shū)前,對(duì)學(xué)生喜歡閱讀的圖書(shū)類(lèi)型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m n

2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類(lèi)圖書(shū)的學(xué)生約有多少人?

3)學(xué)校將舉辦讀書(shū)知識(shí)競(jìng)賽,九年級(jí)1班要在本班3名優(yōu)勝者(21女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案