【題目】如圖,等邊△ABC中,AB=2,點(diǎn)D是以A為圓心,半徑為1的圓上一動(dòng)點(diǎn),連接CD,取CD的中點(diǎn)E,連接BE,則線段BE的最大值與最小值之和為____.
【答案】
【解析】
取點(diǎn)D的特殊位置:當(dāng)點(diǎn)D與點(diǎn)F重合時(shí),當(dāng)點(diǎn)D在CA延長(zhǎng)線與圓A的交點(diǎn)時(shí),當(dāng)CD與圓A相切時(shí),確定FE的長(zhǎng)度都是0.5,從而得到點(diǎn)E的運(yùn)動(dòng)軌跡是以點(diǎn)F為圓心,0.5為半徑的圓上運(yùn)動(dòng),故而得到線段BE的最大值與最小值,由此得到答案.
∵△ABC為等邊三角形,AB=2,
∴AC=AB=2,
設(shè)AC交圓A于點(diǎn)F,
∵點(diǎn)D是以A為圓心,半徑為1的圓上一動(dòng)點(diǎn),
∴當(dāng)點(diǎn)D與點(diǎn)F重合時(shí),如圖1,FE=0.5,
當(dāng)點(diǎn)D在CA延長(zhǎng)線與圓A的交點(diǎn)時(shí),如圖2,FE=0.5,
當(dāng)CD與圓A相切時(shí),FE=0.5,
故點(diǎn)E在以點(diǎn)F為圓心,0.5為半徑的圓上運(yùn)動(dòng),
當(dāng)點(diǎn)B、F、E三點(diǎn)共線時(shí),線段BE有最大值和最小值,如圖4:
∵AF=1,AC=2,
∴FC=1,
∴點(diǎn)F是AC的中點(diǎn),
∵△ABC是等邊三角形,
∴BF⊥AC,
∴BF= ,
線段BE的最大值=,最小值=,
∴線段BE的最大值與最小值之和為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)G是等邊三角形AOB的外心,點(diǎn)A在第一象限,點(diǎn)B坐標(biāo)為(4,0),連結(jié)OG.拋物線y=ax(x﹣2)+1+的頂點(diǎn)為P.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo)與拋物線的對(duì)稱(chēng)軸;
(2)連結(jié)OP,求當(dāng)∠AOG=2∠AOP時(shí)a的值.
(3)如圖②,若拋物線開(kāi)口向上,點(diǎn)C,D分別為拋物線和線段AB上的動(dòng)點(diǎn),以CD為底邊構(gòu)造頂角為120°的等腰三角形CDE(點(diǎn)C,D,E成逆時(shí)針順序),連結(jié)GE.
①點(diǎn)Q在x軸上,當(dāng)四邊形GDQO為平行四邊形時(shí),求GQ的值;
②當(dāng)GE的最小值為1時(shí),求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是( )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四邊形ECFG=2S△BGE.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx 2 +2mx-4(m≠0)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)D的坐標(biāo)為(-2,1),點(diǎn)P在二次函數(shù)的圖象上,∠ADP為銳角,且tan∠ADP=2,求出點(diǎn)P的橫坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明設(shè)計(jì)了一個(gè)摸球?qū)嶒?yàn):在一個(gè)不透明的箱子里放入4個(gè)相同的小球,球上分別標(biāo)有數(shù)字0,10,20和30,然后從箱子里先后摸出兩個(gè)小球(第一次摸出后不放回).
(1)摸出的兩個(gè)小球上所標(biāo)的數(shù)字之和至少為 ,最多為 ;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出摸出的兩個(gè)小球上所標(biāo)的數(shù)字之和不低于30的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:每個(gè)內(nèi)角都相等的八邊形叫做等角八邊形.容易知道,等角八邊形的內(nèi)角都等于135°.下面,我們來(lái)研究它的一些性質(zhì)與判定:
(1)如圖1,等角八邊形ABCDEFGH中,連結(jié)BF.
①請(qǐng)直接寫(xiě)出∠ABF+∠GFB的度數(shù).
②求證:AB∥EF.
③我們把AB與EF稱(chēng)為八邊形的一組正對(duì)邊.由②同理可得:BC與FG,CD與GH,DE與HA這三組正對(duì)邊也分別平行.請(qǐng)模仿平行四邊形性質(zhì)的學(xué)習(xí)經(jīng)驗(yàn),用一句話概括等角八邊形的這一性質(zhì).
(2)如圖2,等角八邊形ABCDEFGH中,如果有AB=EF,BC=FG,則其余兩組正對(duì)邊CD與GH,DE與HA分別相等嗎?證明你的結(jié)論.
(3)如圖3,八邊形ABCDEFGH中,若四組正對(duì)邊分別平行,則顯然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.請(qǐng)?zhí)骄浚涸摪诉呅沃辽傩枰阎獛讉(gè)內(nèi)角為135°,才能保證它一定是等角八邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱(chēng)為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問(wèn)題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問(wèn)題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)沒(méi)有讀過(guò)四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來(lái)閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開(kāi)展了“讀好書(shū),助成長(zhǎng)”的活動(dòng),并計(jì)劃購(gòu)置一批圖書(shū),購(gòu)書(shū)前,對(duì)學(xué)生喜歡閱讀的圖書(shū)類(lèi)型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類(lèi)圖書(shū)的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書(shū)知識(shí)競(jìng)賽,九年級(jí)1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com