如圖,AG平分∠BAC,D為BC上任一點,DE∥AG交AC于E,交BA的延長線于F,

求證:BD∶CD=FB∶EC

答案:
解析:

證明略


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正確的結(jié)論是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,
其中正確的結(jié)論是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:△ABC為邊長是4
3
的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當(dāng)點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).

(1)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為4
3
的正方形,△ABC的移動速度為每秒
3
個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG-GD以每秒2
3
個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線BA-AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年河北省保定市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當(dāng)點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).

(1)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;

(2)如圖2,當(dāng)點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.

(3)如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG﹣GD以每秒個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線BA﹣AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案