(2010•房山區(qū)一模)已知:如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)求證:AC與⊙O相切;
(2)當(dāng)BD=2,sinC=時,求⊙O的半徑.

【答案】分析:連接OE,通過證明OE∥BD證明OE⊥AC,得出AC與⊙O相切;通過證明∠C=∠A,解直角三角形AOE求OE的長,即半徑的長度.
解答:(1)證明:如圖,連接OE.
∵AB=BC且D是BC中點(diǎn)
∴BD⊥AC
∵BE平分∠ABD
∴∠ABE=∠DBE
∵OB=OE
∴∠OBE=∠OEB
∴∠OEB=∠DBE
∴OE∥BD
∴OE⊥AC
∴AC與⊙O相切.

(2)解:∵BD=2,sinC=,BD⊥AC
∴BC=4
∴AB=4
設(shè)⊙O 的半徑為r,則AO=4-r
∵AB=BC
∴∠C=∠A
∴sinA=sinC=
∵AC與⊙O相切于點(diǎn)E,
∴OE⊥AC
∴sinA==
∴r=
點(diǎn)評:考查了切線的判定、圓的性質(zhì)以及解直角三角形的簡單應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)如果正n邊形的一個外角與和它相鄰的內(nèi)角之比是1:3,那么n的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)在一個不透明的口袋中裝有2個紅球、2個黑球,這些球除顏色外其他都相同,在看不到球的條件下,隨機(jī)地從這個袋子中一次摸出兩個球,摸到兩個球都是紅球的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)已知a2+2a-15=0,求
a-1
a+2
a2-4
a2-2a+1
+
1
a+3
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)2009年我區(qū)消費(fèi)品市場吃、穿、用、燒類商品實(shí)現(xiàn)全面增長.下面是根據(jù)有關(guān)數(shù)據(jù)制作的2009年全區(qū)社會消費(fèi)品零售額的統(tǒng)計(jì)圖表.

表1   2009年我區(qū)消費(fèi)品市場吃、穿、用、燒類商品零售額的統(tǒng)計(jì)表(單位:億元)
各類商品 吃類商品 穿類商品 用類商品 燒類商品
2009年零售額 20.9 7.2 47.9 23.1
請根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖1;
(2)求2009年我區(qū)消費(fèi)品市場吃、穿、用、燒類商品零售額的平均數(shù);
(3)已知2009年“穿類商品”的零售額同比增長15%,若按照這個比例增長,估計(jì)2011年全年穿類商品的零售額可能達(dá)到多少億元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,直線l1y=-
3
x+6
3
交x軸、y軸于A、B兩點(diǎn),點(diǎn)M(m,n)是線段AB上一動點(diǎn),點(diǎn)C是線段OA的三等分點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)連接CM,將△ACM繞點(diǎn)M旋轉(zhuǎn)180°,得到△A′C′M.
①當(dāng)BM=
1
2
AM時,連接A′C、AC′,若過原點(diǎn)O的直線l2將四邊形A′CAC′分成面積相等的兩個四邊形,確定此直線的解析式;
②過點(diǎn)A′作A′H⊥x軸于H,當(dāng)點(diǎn)M的坐標(biāo)為何值時,由點(diǎn)A′、H、C、M構(gòu)成的四邊形為梯形?

查看答案和解析>>

同步練習(xí)冊答案