已知a、b、c、d是成比例的線段,其中a=3cm,b=2cm,c=6cm,則d=_______
科目:初中數(shù)學 來源: 題型:填空題
如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB上,折痕為AE,再將△AED以DE為折痕向右折疊,AE與BC交于點F,則△CEF的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
把一個三角形分割成幾個小正三角形,有兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正三角形分割成4個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了3個正三角形.
基本分割法2:如圖②,把一個正三角形分割成6個小正三角形,即在原來1個正三角形的基礎(chǔ)上增加了5個正三角形.
請你運用上述兩種“基本分割法”,解決下列問題:
(1)把圖③的正三角形分割成9個小正三角形;
(2)把圖④的正三角形分割成10個小正三角形;
(3)把圖⑤的正三角形分割成11個小正三角形;
(4)把圖⑥的正三角形分割成12個小正三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心,OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=2CD•OE;
(3)若cos∠BAD=,BE=,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
操作:小明準備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的圓形紙片進行如下設(shè)計:
說明:方案一:圖形中的圓過點A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經(jīng)過兩個正方形的頂點.
紙片利用率=×100%
發(fā)現(xiàn):(1)方案一中的點A、B恰好為該圓一直徑的兩個端點.
你認為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.
請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進行了新的設(shè)計(方案三),請直接寫出方案三的利用率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com