【題目】如圖,在平面直角坐標系中,點A(8,0),點P(0,m),將線段PA繞著點P逆時針旋轉(zhuǎn)90°,得到線段PB,連接AB,OB,則BO+BA的最小值為

【答案】8
【解析】如圖,過B作BD⊥y軸交于點D,則∠BPD+∠PBD=90°,
∵∠BPD+∠APO=90°,
∴∠PBD=∠APO,
又∵PA=PB,∠PDB=∠POA=90°,
所以△OAP≌△DPB,
則DP=OA=8,BD=OP=|m|,
則OD=OP+PD=|m|+8,
當m>0時,B(m,m+8);
當m=0時,B(0,8);
當m<0時,B(m,m+8);
則點B(m,m+8)在直線y=x+8.

作點A關(guān)于直線y=x+8的對稱點A',連接A'O
交直線y=x+8于點B,連接AB,此時AB+OB的值最小,即為OA’的長,連接AA',
過A'作AF⊥y軸交于點F,直線y=x+8與y軸的交點為E(0,8).
易求得△OAE≌△FA'E,
則A'F=OA=8,EF=OE=8,
則A'(-8,16).
所以O(shè)A'=.
則AB+OB的值最小為8.
故答案為8.

構(gòu)造全等三角形,求出點B的坐標,從而得到點B的運動軌跡的一條直線,然后根據(jù)軸對稱圖形求最短徑的方法求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求,商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,小紅到美麗的世界地質(zhì)公園湖光巖參加社會實踐活動,在景點P處測得景點B位于南偏東45°方向;然后沿北偏東60°方向走100米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與B之間的距離.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O1、⊙O2相內(nèi)切于點A,其半徑分別是8和4,將⊙O2沿直線O1O2平移至兩圓相外切時,則點O2移動的長度是(
A.4
B.8
C.16
D.8或16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,已知拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),拋物線對稱軸l與x軸相交于點M.

(1)求拋物線的解析式和對稱軸;
(2)點P在拋物線上,且以A、O、M、P為頂點的四邊形四條邊的長度為四個連續(xù)的正整數(shù),請你直接寫出點P的坐標;
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點N,使△NAC的面積最大?若存在,請你求出點N的坐標;若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(3,0),以A為圓心作⊙A與Y軸切于原點,與x軸的另一個交點為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點A及點C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個交點為D,過D作⊙A的切線DE,E為切點,求此切線長;
(3)點F是切線DE上的一個動點,當△BFD與△EAD相似時,求出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表.

組別

時間(小時)

頻數(shù)(人數(shù))

頻率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合計

1

請根據(jù)圖表中的信息,解答下列問題:

(1)表中的a= , b= , 中位數(shù)落在組,將頻數(shù)分布直方圖補全
(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出兩人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點A處測得正前方小島C的俯角為30°,面向小島方向繼續(xù)飛行10km到達B處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為45°,如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

同步練習冊答案