【題目】永定土樓是世界文化遺產(chǎn)“福建土樓”的組成部分,是閩西的旅游勝地.“永定土樓”模型深受游客喜愛.圖中折線(AB∥CD∥x軸)反映了某種規(guī)格土樓模型的單價(jià)y(元)與購買數(shù)量x(個(gè))之間的函數(shù)關(guān)系.
(1)求當(dāng)10≤x≤20時(shí),y與x的函數(shù)關(guān)系式;
(2)已知某旅游團(tuán)購買該種規(guī)格的土樓模型總金額為2625元,問該旅游團(tuán)共購買這種土樓模型多少個(gè)?(總金額=數(shù)量×單價(jià))
【答案】(1)當(dāng)10≤x≤20時(shí),y=﹣5x+250;(2)旅游團(tuán)共購買這種土樓模型15個(gè)
【解析】分析:(1)設(shè)出一次函數(shù)解析式,把B、C兩點(diǎn)的坐標(biāo)代入可得所求函數(shù)關(guān)系式;
(2)所用金額既不是200的倍數(shù),也不是150的倍數(shù),可得模型的單價(jià)在150和200之間,根據(jù)總價(jià)等于2625得到一元二次方程,求解即可.
詳解:(1)當(dāng)10≤x≤20時(shí),設(shè)y=kx+b(k≠0)
依題意,得
解得
∴當(dāng)10≤x≤20時(shí),y=﹣5x+250;
(2)∵10×200<2625<20×150
∴10<x<20(8分)
依題意,得xy=x(﹣5x+250)=2625
即x2﹣50x+525=0
解得x1=15,x2=35(舍去)
∴只取x=15.(12分)
答:該旅游團(tuán)共購買這種土樓模型15個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)23﹣17﹣(﹣7)+(﹣16)
(2)
(3)﹣22÷(﹣4)3+|0.8﹣1|×(2)2
(4)4xy+(3y2﹣2x2)﹣(5xy﹣2x2)﹣4y2
(5)先化簡(jiǎn),再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣,y=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知同一平面內(nèi)∠AOB=90°,∠AOC=60°.
(1)問題發(fā)現(xiàn):∠BOD的余角是 ,∠BOC的度數(shù)是 ;
(2)拓展探究:若OD平分∠BOC,OE平分∠AOC,則∠DOE的度數(shù)是 ;
(3)類比延伸:在(2)條件下,如果將題目中的∠AOB=90°改為∠AOB=2∠β;∠AOC=60°改為∠AOC=2α(α<45°),其他條件不變,你能求出∠DOE嗎?若能,請(qǐng)你寫出求解過程:若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口P位于東西方向的海岸線上,A、B兩艘輪船同時(shí)從港口P出發(fā),各自沿一固定方向航行,A輪船每小時(shí)航行12海里,B輪船每小時(shí)航行16海里.它們離開港口一個(gè)半小時(shí)后分別位于點(diǎn)R、Q處,且相距30海里.已知B輪船沿北偏東60°方向航行.
(1)A輪船沿哪個(gè)方向航行?請(qǐng)說明理由;
(2)請(qǐng)求出此時(shí)A輪船到海岸線的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)C表示數(shù)c,且.我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫字母一起標(biāo)記.
比如,點(diǎn)A與點(diǎn)B之間的距離記作AB.
(1)求AC的值;
(2)若數(shù)軸上有一動(dòng)點(diǎn)D滿足CD+AD=36,直接寫出D點(diǎn)表示的數(shù);
(3)動(dòng)點(diǎn)B從數(shù)1對(duì)應(yīng)的點(diǎn)開始向右運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)點(diǎn)A,C在數(shù)軸上運(yùn)動(dòng),點(diǎn)A、C的速度分別為每秒 3個(gè)單位長(zhǎng)度,每秒4個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.
①若點(diǎn)A向右運(yùn)動(dòng),點(diǎn)C向左運(yùn)動(dòng),AB=BC,求t的值.
②若點(diǎn)A向左運(yùn)動(dòng),點(diǎn)C向右運(yùn)動(dòng),2AB-m×BC的值不隨時(shí)間t的變化而改變,請(qǐng)求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) yax 2(a0) 的圖象與反比例函數(shù) y(k0) 的圖象交于 A、B兩點(diǎn),且與x軸、y軸分別交于點(diǎn)C、D.已知 tan∠AOC=,AO=.
(1)求這個(gè)一次函數(shù)和反比例函數(shù)的解析式;
(2) 若點(diǎn) F 是點(diǎn)D 關(guān)于 x 軸的對(duì)稱點(diǎn),求△ABF 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以△ABC的邊AB為直徑的⊙O角邊BC于點(diǎn)E,過點(diǎn)E作DE⊥AC交AC于D.
(1)求證:DE是⊙O的切線;
(2)如圖2,若線段AB、DE的延長(zhǎng)線交于點(diǎn)F,∠C=75°,CD=2﹣,求⊙O的半徑和EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com