(x2-2x)(x2-2x-2)-3.
分析:先變形得到原式=(x2-2x)2-2(x2-2x)-3,這樣可把原式看作為x2-2x的二次三項式,運用十字相相乘法得到(x2-2x-3)(x2-2x+1),然后再利用十字相乘法和公式法分解即可.
解答:解:原式=(x2-2x)2-2(x2-2x)-3
=(x2-2x-3)(x2-2x+1)
=(x-3)(x+1)(x-1)2
點評:本題考查了因式分解-十字相乘法:借助畫十字交叉線分解系數(shù),從而幫助我們把二次三項式分解因式的方法,通常叫做十字相乘法.如x2+(p+q)x+pq=(x+p)(x+q).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解:將下列二次三項式在實數(shù)范圍內(nèi)分解因式:
(1)x2-5x+6;(2)x2-2x+1;(3)4x2+8x-1.
解:(1)令x2-5x+6=0,解得方程的兩根為x1=2,x2=3.則x2-5x+6=(x-2)(x-3)
(2)令x2-2x+1=0,解得方程的兩根為x1=x2=1,則x2-2x+1=(x-1)2
(3)令4x2+8x-1=0,解得方程的兩根為x1=
-2+
5
2
,x2=
-2-
5
2
,則4x2+8x-1=4(x-
-2-
5
2
)(x-
-2-
5
2
)=(2x+2-
5
)(2x+2+
5

參考以上解答下列問題:
在實數(shù)范圍內(nèi)因式分解:
①25x2+10x+1②4x2-8x+1
二次三項式2x2-3x+2在實數(shù)范圍內(nèi)能分解因式嗎?如果能,請你分解出來;如果不能分解,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2-2x-3
(1)求出拋物線y=x2-2x-3的對稱軸和頂點坐標;
(2)在直角坐標系中,直接畫出拋物線y=x2-2x-3(注意:關鍵點要準確,不必寫出畫圖象的過程);
(3)根據(jù)圖象回答:
①x取什么值時,拋物線在x軸的上方?
②x取什么值時,y的值隨x的值的增大而減。
(4)根據(jù)圖象直接寫出不等式x2-2x-3>5 的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

填表解題:
方程 兩根x1,x2 x1+x2= x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
上表你能猜想若x1,x2是方程ax2+bx+c=0(a不等0)的兩根則x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

利用你的猜想解下列問題:
(1)若x1,x2是方程x2-2x-3=0的兩根求,x12+x22和(x1+2)(x2+2)的值.
(2)已知2+
3
是方程x2-4x+c=0的一個根,求方程的另一個根及c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

先閱讀,再填空,再解答后面的相關問題:
(1)方程x2-x-2=0的根是x1=2,x2=-1,則x1+x2=1,x1•x2=-2
(2)方程2x2-3x-5=0的根是數(shù)學公式,則數(shù)學公式
(3)方程3x2-2x-1=0的根是x1=______,x2=______,則x1+x2=______,x1•x2=______.
根據(jù)對以上(1)、(2)、(3)的觀察、思考,你能否猜出:如果關于x的一元二次方程mx2+nx+p=0(m≠0且m、n、p為常數(shù)且n2-4mp≥0)的兩根x1、x2,那么x1+x2、x1•x2與系數(shù)m、n、p有什么關系?請寫出你的猜想并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀理解:將下列二次三項式在實數(shù)范圍內(nèi)分解因式:
(1)x2-5x+6;(2)x2-2x+1;(3)4x2+8x-1.
解:(1)令x2-5x+6=0,解得方程的兩根為x1=2,x2=3.則x2-5x+6=(x-2)(x-3)
(2)令x2-2x+1=0,解得方程的兩根為x1=x2=1,則x2-2x+1=(x-1)2;
(3)令4x2+8x-1=0,解得方程的兩根為數(shù)學公式,則4x2+8x-1=4(x-數(shù)學公式)(數(shù)學公式)=(數(shù)學公式)(數(shù)學公式
參考以上解答下列問題:
在實數(shù)范圍內(nèi)因式分解:
①25x2+10x+1②4x2-8x+1
二次三項式2x2-3x+2在實數(shù)范圍內(nèi)能分解因式嗎?如果能,請你分解出來;如果不能分解,請說明理由.

查看答案和解析>>

同步練習冊答案