在平面直角坐標系中,設坐標軸的單位長度為1cm,整數(shù)點P從原點O出發(fā),速度為1cm/s,且點P只能向上或向右運動,請回答下列問題:
(1)填表:
P從O點出發(fā)時間可得到整數(shù)點的坐標可得到整數(shù)點的個數(shù)
1秒(0,1)、(1,0)2
2秒
3秒
(2)當P點從點O出發(fā)10秒,可得到的整數(shù)點的個數(shù)是個.
(3)當P點從點O出發(fā)秒時,可得到整數(shù)點(10,5)

解:(1)以1秒時達到的整數(shù)點為基準,向上或向右移動一格得到2秒時的可能的整數(shù)點;再以2秒時得到的整數(shù)點為基準,向上或向右移動一格,得到3秒時可能得到的整數(shù)點.
P從O點出發(fā)時間可得到整數(shù)點的坐標可得到整數(shù)點的個數(shù)
1秒(0,1)、(1,0)2
2秒(0,2),(2,0),(1,1)3
3秒(0,3),(3,0),(2,1),(1,2)4
(2)1秒時,達到2個整數(shù)點;2秒時,達到3個整數(shù)點;3秒時,達到4個整數(shù)點,那么10秒時,應達到11個整數(shù)點;

(3)橫坐標為10,需要從原點開始沿x軸向右移動10秒,縱坐標為5,需再向上移動5秒,所以需要的時間為15秒.
分析:(1)在坐標系中全部標出即可;
(2)由(1)可探索出規(guī)律,推出結(jié)果;
(3)可將圖向右移10各單位,用10秒;再向上移動5個單位用5秒.
點評:解決本題的關鍵是掌握所給的方法,得到相應的可能的整數(shù)點的坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案