【題目】已知:如圖,,,點(diǎn)在上,.
求證:(1);(2)∥.
【答案】(1)見解析;(2)見解析
【解析】
(1)先根據(jù)SAS證明△CDF≌△ABE,再由全等三角形的性質(zhì)得到AE=CF,∠DFC=∠BEA,再根據(jù)SAS證明△AEF≌△CFE,從而得到結(jié)論;
(2)由(1)證明△CDF≌△ABE可得∠DFC=∠BEA,根據(jù)平行線的判定即可得到結(jié)論.
(1) ∵AB//CD,
∴∠B=∠D,
∵DE=BF,
∴DE+EF=BF+EF,即DF=BE,
在△CDF和△ABE中,
,
∴△CDF≌△ABE(SAS),
∴AE=CF,∠DFC=∠BEA,
在△AEF和△CFE中,
,
∴△AEF≌△CFE(SAS),
∴AF=CE;
(2)∵△CDF≌△ABE,
∴∠DFC=∠BEA,
∴∥.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M的橫坐標(biāo)是的平方根,縱坐標(biāo)是2,且點(diǎn)M到y軸的距離是到x軸的距離的3倍。
(1)求a的值;
(2)求點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=12,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=900,,,且,若當(dāng)時(shí),代數(shù)式的值最小,且最小值為b.
(1)求 ,的值.(2)求△ABC的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017·達(dá)州)下列命題是真命題的是( )
A. 若一組數(shù)據(jù)是1,2,3,4,5,則它的方差是3
B. 若分式方程有增根,則它的增根是1
C. 對(duì)角線互相垂直的四邊形,順次連接它的四邊中點(diǎn)所得四邊形是菱形
D. 若一個(gè)角的兩邊分別與另一個(gè)角的兩邊平行,則這兩個(gè)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
(1)若點(diǎn)Q與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請(qǐng)說明理由.
(2)若點(diǎn)Q與點(diǎn)P的運(yùn)動(dòng)速度不同,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí)能使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△A′B′C,且點(diǎn)A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為( )
A. 65°B. 60°C. 50°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三點(diǎn)在⊙O上,直徑BD平分∠ABC,過點(diǎn)D作DE∥AB交弦BC于點(diǎn)E,在BC的延長(zhǎng)線上取一點(diǎn)F,使得EFDE.
(1)求證:DF是⊙O的切線;
(2)連接AF交DE于點(diǎn)M,若 AD4,DE5,求DM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AC為邊在△ABC外作正△ACD,連接BD.
(1)以點(diǎn)A為中心,把△ADB順時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(保留作圖痕跡);
(2)若∠ABC=30°,BC=4,BD=6,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com