【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:
電影類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
電影部數(shù) | 140 | 50 | 300 | 200 | 800 | 510 |
好評率 |
注:好評率是指一類電影中獲得好評的部數(shù)與該類電影的部數(shù)的比值.
如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評的第四類電影的概率是______;
電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評率發(fā)生變化假設(shè)表格中只有兩類電影的好評率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評率增加,哪類電影的好評率減少,可使改變投資策略后總的好評率達(dá)到最大?
答:______.
【答案】 第五類電影的好評率增加0.1,第二類電影的好評率減少0.1
【解析】
(1)計(jì)算第四類電影中獲得好評的電影部數(shù),代入公式可得概率.
(2)根據(jù)每部電影獲得好評的部數(shù)作出合理建議.
(1)第四類電影中獲得好評的電影部數(shù)為:
抽到的這部電影是獲得好評的第四類電影的概率是
(2)第五類電影的電影部數(shù)最多,第二類電影的電影部數(shù)最少,則第五類電影的好評率增加0.1,第二類電影的好評率減少0.1,可使改變投資策略后總的好評率達(dá)到最大
故答案為:(1). (2). 第五類電影的好評率增加0.1,第二類電影的好評率減少0.1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳調(diào)査了七年級400名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計(jì)圖的一部分如圖:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中表示“步行”的扇形圓心角的度數(shù);
(3)估計(jì)在3000名學(xué)生中乘公交的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(0,4)、(4,0),點(diǎn)C在第一象限內(nèi),∠BAC=90°,AB=2AC,函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,將△ABC沿x軸的正方向向右平移m個(gè)單位長度,使點(diǎn)A恰好落在函數(shù)y=(x>0)的圖象上,則m的值為( )
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,以為直徑作交邊于點(diǎn),過點(diǎn)作交于點(diǎn),延長交的延長線于點(diǎn).
(1)求證:是的切線;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4cm,點(diǎn)C為線段AB上一動(dòng)點(diǎn),過點(diǎn)C作AB的垂線交⊙O于點(diǎn)D,E,連結(jié)AD,AE.設(shè)AC的長為xcm,△ADE的面積為ycm2.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量、分析,得到了y與x的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 | 4.8 | 5.2 | 4.6 | 0 |
(2)如圖,建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△ADE的面積為4cm2時(shí),AC的長度約為___________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過A(-2, 0), C(0, 6)兩點(diǎn)的拋物線y=-x2+ax+b與x軸交于另一點(diǎn)B,點(diǎn)D是拋物線的頂點(diǎn).
(1)求a、b的值;
(2)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),過P作直線l//AC交拋物線于點(diǎn)Q.隨著點(diǎn)P的運(yùn)動(dòng),若以A、P、Q、C為頂點(diǎn)的四邊形是平行四邊形,請直接寫出符合條件的點(diǎn)Q的坐標(biāo);
(3)在直線AC上是否存在一點(diǎn)M,使△BDM的周長最小,若存在,請找出點(diǎn)M并求出點(diǎn)M的坐標(biāo).若不存在,請說明理由。
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com