【題目】已知:如圖,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分別是邊AC,AB上的高,BD,CE相交于H,求∠BHC的度數(shù).
【答案】135°
【解析】
先設(shè)∠A=3x,∠ABC=4x,∠ACB=5x,再結(jié)合三角形內(nèi)角和等于180°,可得關(guān)于x的一元一次方程,求出x,從而可分別求出∠A,∠ABC,∠ACB,在△ABD中,利用三角形內(nèi)角和定理,可求∠ABD,再利用三角形外角性質(zhì),可求出∠BHC.
解:∵在△ABC中,∠A:∠ABC:∠ACB=3:4:5,
故設(shè)∠A=3x,∠ABC=4x,∠ACB=5x.
∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴3x+4x+5x=180°,
解得x=15°,
∴∠A=3x=45°.
∵BD,CE分別是邊AC,AB上的高,
∴∠ADB=90°,∠BEC=90°,
∴在△ABD中,∠ABD=180°-∠ADB-∠A=180°-90°-45°=45°,
∴∠BHC=∠ABD+∠BEC=45°+90°=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題;△ABC中,有兩個(gè)內(nèi)角相等.
①若∠A=110°,求∠B的度數(shù);
②若∠A=40°,求∠B的度數(shù).
小明通過(guò)探究發(fā)現(xiàn),∠A的度數(shù)不同,∠B的度數(shù)的個(gè)數(shù)也可能不同,因此為同學(xué)們提供了如下解題的想法:
對(duì)于問(wèn)題①,根據(jù)三角形內(nèi)角和定理,∵∠A=110°>90°,∠B=∠C=35°;
對(duì)于問(wèn)題②,根據(jù)三角形內(nèi)角和定理,∵∠A=40°<90°,∴∠A=∠B或∠A=∠C或∠B=∠C,∴∠B的度數(shù)可求.請(qǐng)回答:
(1)問(wèn)題②中∠B的度數(shù)為 ;
(2)參考小明解決問(wèn)題的思路,解決下面問(wèn)題:
△ABC中,有兩個(gè)內(nèi)角相等.設(shè)∠A=x°,當(dāng)∠B有三個(gè)不同的度數(shù)時(shí),求∠B的度數(shù)(用含x的代式表示)以及x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一件工藝品的進(jìn)價(jià)為100元,標(biāo)價(jià)135元出售,每天可售出100件,根據(jù)銷售統(tǒng)計(jì),一件工藝品每降價(jià)1元,則每天可多售出4件,要使每天獲得的利潤(rùn)最大,則每件需降價(jià)( )
A.3.6 元
B.5 元
C.10 元
D.12 元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
(1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
(1)小亮遇到這樣問(wèn)題:如圖1,已知AB∥CD,EOF是直線AB、CD間的一條折線.判斷∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系.小亮通過(guò)思考發(fā)現(xiàn):過(guò)點(diǎn)O作OP∥AB,通過(guò)構(gòu)造內(nèi)錯(cuò)角,可使問(wèn)題得到解決.
請(qǐng)回答:∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系是 .
參考小亮思考問(wèn)題的方法,解決問(wèn)題:
(2)如圖2,將△ABC沿BA方向平移到△DEF(B、D、E共線),∠B=50°,AC與DF相交于點(diǎn)G,GP、EP分別平分∠CGF、∠DEF相交于點(diǎn)P,求∠P的度數(shù);
(3)如圖3,直線m∥n,點(diǎn)B、F在直線m上,點(diǎn)E、C在直線n上,連接FE并延長(zhǎng)至點(diǎn)A,連接BA、BC和CA,做∠CBF和∠CEF的平分線交于點(diǎn)M,若∠ADC=α,則∠M= (直接用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE⊥AC與點(diǎn)E,MN⊥AC于點(diǎn)N,∠1=∠2,∠3=∠C,若∠AFE=80°,求∠DAF的度數(shù).請(qǐng)根據(jù)解題過(guò)程“填空”或“說(shuō)明理由”.
解:∵BE⊥AC,MN⊥AC
∴BE∥MN
∴∠1= ( )
又∵∠1=∠2
∴∠2= ( )
∴EF∥BC( )
∵∠3=∠C
∴AD∥BC
∴AD∥EF
∴∠DAF+∠AFE=180°( )
∴∠DAF=180°﹣∠AFE=180°﹣80°=100°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請(qǐng)我仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a=________, b=___________.
(2)若a+4=(m+n)2,且a、m、n均為正整數(shù),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】青少年“心理健康”問(wèn)題已經(jīng)引起了社會(huì)的關(guān)注,某中學(xué)對(duì)全校850名學(xué)生進(jìn)行了一次“心理健康”知識(shí)測(cè)試,并從中抽取了50名學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本,列出下面的頻數(shù)分布表(單位:分)
成績(jī) | 50.5≤x<60.5 | 60.5≤x<70.5 | 70.5≤x<80.5 | 80.5≤x<90.5 | 90.5≤x<100.5 |
頻數(shù) | 2 | 8 | 10 | 16 | 14 |
(1)組距是 ,組數(shù)是 .
(2)成績(jī)?cè)?/span>60.5≤x<80.5范圍的頻數(shù)是 .
(3)畫出頻數(shù)分布直方圖.
(4)若成績(jī)?cè)?/span>80分以上(不含80分)為優(yōu)秀,試估計(jì)該校成績(jī)優(yōu)秀的有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com