【題目】如圖,已知線段AB上有兩點C,D,且AC∶CD∶DB=2∶3∶4,E,F(xiàn)分別為AC,DB的中點,EF=2.4 cm,求線段AB的長.
科目:初中數(shù)學 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①兔子和烏龜同時從起點出發(fā);
②“龜兔再次賽跑”的路程為1000米;
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是__________________.(把你認為正確說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
【深入探究】
第一種情況:當∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)______,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若______,則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,錯誤的是( )
A.平行四邊形的對角線互相平分B.菱形的對角線互相垂直
C.矩形的對角線相等D.正方形的對角線不一定互相平分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反證法:先假設(shè)命題的不成立,然后推導(dǎo)出與定義、基本事實、已有定理或已知條件相的結(jié)果,從而證明命題的結(jié)論成立,這種證明方法稱為反證法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com