(2011•陜西)如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為E,這時(shí)折痕與邊BC或者邊CD(含端點(diǎn))交于F,然后展開(kāi)鋪平,則以B、E、F為頂點(diǎn)的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個(gè)“折痕△BEF”是一個(gè) 三角形
(2)如圖②、在矩形ABCD中,AB=2,BC=4,,當(dāng)它的“折痕△BEF”的頂點(diǎn)E位于AD的中點(diǎn)時(shí),畫(huà)出這個(gè)“折痕△BEF”,并求出點(diǎn)F的坐標(biāo);
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說(shuō)明理由,并求出此時(shí)點(diǎn)E的坐標(biāo)?若不存在,為什么?
解:(1)等腰.
(2)如圖①,連接BE,畫(huà)BE的中垂線交BC與點(diǎn)F,連接EF,△BEF是矩形ABCD的一個(gè)折痕三角形.
∵折痕垂直平分BE,AB=AE=2,
∴點(diǎn)A在BE的中垂線上,即折痕經(jīng)過(guò)點(diǎn)A.
∴四邊形ABFE為正方形.
∴BF=AB=2,
∴F(2,0).
(3)矩形ABCD存在面積最大的折痕三角形BEF,其面積為4,
理由如下:①當(dāng)F在邊BC上時(shí),如圖②所示.
S△BEF≤S矩形ABCD,即當(dāng)F與C重合時(shí),面積最大為4.
②當(dāng)F在邊CD上時(shí),如圖③所示,
過(guò)F作FH∥BC交AB于點(diǎn)H,交BE于K.
∵S△EKF=KF•AH≤HF•AH=S矩形AHFD,
S△BKF=KF•BH≤HF•BH=S矩形BCFH,
∴S△BEF≤S矩形ABCD=4.
即當(dāng)F為CD中點(diǎn)時(shí),△BEF面積最大為4.
下面求面積最大時(shí),點(diǎn)E的坐標(biāo).
①當(dāng)F與點(diǎn)C重合時(shí),如圖④所示.
由折疊可知CE=CB=4,
在Rt△CDE中,ED===2.
∴AE=4﹣2.
∴E(4﹣2,2).
②當(dāng)F在邊DC的中點(diǎn)時(shí),點(diǎn)E與點(diǎn)A重合,如圖⑤所示.
此時(shí)E(0,2).
綜上所述,折痕△BEF的最大面積為4時(shí),點(diǎn)E的坐標(biāo)為E(0,2)或E(4﹣2,2).
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)解析版 題型:解答題
(2011•陜西)如圖,在△ABC中,∠B=60°,⊙O是△ABC外接圓,過(guò)點(diǎn)A作⊙O的切線,交CO的延長(zhǎng)線于P點(diǎn),CP交⊙O于D
(1)求證:AP=AC;
(2)若AC=3,求PC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com