精英家教網(wǎng)如圖,長方體的底面邊長分別為1cm 和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要
 
cm.
分析:要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.
解答:精英家教網(wǎng)解:將長方體展開,連接A、B′,
∵AA′=1+3+1+3=8(cm),A′B′=6cm,
根據(jù)兩點之間線段最短,AB′=
82+62
=10cm.
故答案為:10.
點評:考查了平面展開-最短路徑問題,本題就是把長方體的側(cè)面展開“化立體為平面”,用勾股定理解決.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要
 
cm;如果從點A開始經(jīng)過4個側(cè)面纏繞n圈到達點B,那么所用細線最短需要
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方體的底面邊長分別為3 cm和2 cm,高為6 cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方體的底面邊長分別為1cm和3cm,高為6cm,如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達B(B為棱的中點),那么所用細線最短需要多長?如果從點A開始經(jīng)過4個側(cè)面纏繞n圈到達點B,那么所用細線最短需要多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,長方體的底面邊長分別為2cm和4cm,高為5cm.若一只螞蟻從P點開始經(jīng)過4個側(cè)面爬行一圈到達Q點,則螞奴爬行的最短路徑長為
13
cm.

查看答案和解析>>

同步練習冊答案