【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線BD對(duì)折,使得點(diǎn)C落在點(diǎn)F處,DF交AB于E,AD=8,AB=16.
(1)求證:DE=BE;
(2)求S△BEF;
(3)若M、N分別為線段CD、DB上的動(dòng)點(diǎn),直接寫出(NC+NM)的最小值___________.
【答案】(1)證明見解析;(2)S△BDE=40;(3)12.8.
【解析】
(1)由折疊的性質(zhì)可得到∠BDC=∠BDF,再由平行線的性質(zhì)可得∠ABD=∠BDC,由此可得∠ABD=∠BDF,據(jù)此即可得結(jié)論;
(2)設(shè)BE=x,則DE=BE=x,AE=16-x,利用勾股定理即可求出BE的長(zhǎng),再利用三角形面積公式進(jìn)行求解即可得答案;
(3)由題意知C、F關(guān)于直線BD對(duì)稱,過點(diǎn)F作FM⊥CD,垂足為M,交BD于點(diǎn)N,交AB于點(diǎn)H,此時(shí)MN+NC的值最小,求出FH的長(zhǎng)即可求得答案.
(1)∵△BCD≌△BFD,
∴∠BDC=∠BDF,
又∵四邊形ABCD是長(zhǎng)方形,
∴AB∥DC,
∴∠ABD=∠BDC,
∴∠ABD=∠BDF,
∴DE=BE;
(2)∵四邊形ABCD是矩形,
∴∠A=90°,
∴AD2+AE2=DE2,
設(shè)BE=x,則DE=BE=x,AE=AB-BE=16-x,
∴82+(16-x)2=x2,
∴x=10,
∴S△BDE==40;
(3)由題意知C、F關(guān)于直線BD對(duì)稱,過點(diǎn)F作FM⊥CD,垂足為M,交BD于點(diǎn)N,交AB于點(diǎn)H,此時(shí)MN+NC的值最小,
∵四邊形ABCD是矩形,
∴AB//CD,∠A=∠ADM=90°,
∵FM⊥CD,
∴∠FMD=90°,
∴四邊形ADMH是矩形,
∴∠FHE=90°,HM=AD=8,
∵∠A=∠BFE=90°,AD=BF,DE=BE,
∴Rt△ADE≌Rt△FBE(HL),
∴EF=AE=16-10=6,
∵S△BEF=,
∴FH==4.8,
∴FM=FH+HM=4.8+8=12.8,
即NC+NM的最小值為12.8,
故答案為:12.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】路橋方林汽車城某4S店銷售某種型號(hào)的汽車,每輛車的進(jìn)貨價(jià)為15萬元,市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為21萬元時(shí),平均每周能售出6輛,而當(dāng)銷售價(jià)每降低0.5萬元時(shí),平均每周能多售出3輛,如果設(shè)每輛汽車降價(jià)x萬元,平均每周的銷售利潤(rùn)為W萬元
(1)該4S店要想平均周獲得72萬元的銷售利潤(rùn),并且要盡可能地讓利于顧客,則每輛汽車的定價(jià)應(yīng)為多少萬元?
(2)試寫出W與x之間的函數(shù)關(guān)系式,并說明當(dāng)每輛汽車的定價(jià)為多少萬元時(shí),平均每周的銷售利潤(rùn)最大?最大利潤(rùn)是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、N重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F。
【1】若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
【2】若OA=2.0C=4.問當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大.其最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有、兩種商品,已知買一件商品要比買一件商品少30元,用160元全部購(gòu)買商品的數(shù)量與用400元全部購(gòu)買商品的數(shù)量相同.
(1)求、兩種商品每件各是多少元?
(2)如果小亮準(zhǔn)備購(gòu)買、兩種商品共10件,總費(fèi)用不超過380元,且不低于300元,則如何購(gòu)買才能使總費(fèi)用最低?最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為圓的直徑,為圓上一點(diǎn),為延長(zhǎng)線一點(diǎn),且,于點(diǎn).
(1)求證:直線為圓的切線;
(2)設(shè)與圓交于點(diǎn),的延長(zhǎng)線與交于點(diǎn),
①求證:
②若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長(zhǎng)1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”
如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算:圓形木材的直徑AC是( 。
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
在△ABC中,AB=9,AC=5,求BC邊上的中線AD的取值范圍。
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法(如圖1):
①延長(zhǎng)AD到Q,使得DQ=AD;
②再連接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三邊關(guān)系可得4<AQ<14,則AD的取值范圍是_____________。
感悟:解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”等條件,可以考慮倍長(zhǎng)中線,構(gòu)造全等三角形,把分散的己知條件和所求證的結(jié)論集中到同一個(gè)三角形中。
(2)請(qǐng)你寫出圖1中AC與BQ的位置關(guān)系并證明。
(3)思考:已知,如圖2,AD是△ABC的中線,AB=AE,AC=AF,∠BAE=∠FAC=90°。試探究線段AD與EF的數(shù)量和位置關(guān)系并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對(duì)稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=Rt∠,∠ABC=60°,D是BC邊上的點(diǎn),CD=1,將△ACD沿直線AD翻折,點(diǎn)C恰好落在直線AB的邊上的E處,若P是直線AD上的動(dòng)點(diǎn),則△PEB的周長(zhǎng)最小值是____________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com