【題目】已知:如圖,在平行四邊形ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點(diǎn)E與點(diǎn)C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠B=60°,當(dāng)AB與BC滿足什么數(shù)量關(guān)系時(shí),四邊形ABFG是菱形?證明你的結(jié)論.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AB=CD.

∵AE是BC邊上的高,且CG是由AE沿BC方向平移而成.

∴CG⊥AD.

∴∠AEB=∠CGD=90°.

∵AE=CG,

∴Rt△ABE≌Rt△CDG(HL).

∴BE=DG;


(2)解:當(dāng)BC= AB時(shí),四邊形ABFG是菱形.

證明:∵AB∥GF,AG∥BF,

∴四邊形ABFG是平行四邊形.

∵Rt△ABE中,∠B=60°,

∴∠BAE=30°,

∵BC= AB

∴BE=CF

∴EF= AB

∴AB=BF

∴四邊形ABFG是菱形


【解析】(1)根據(jù)平移的性質(zhì),可得:BE=FC,再證明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四邊形ABFG是菱形,須使AB=BF;根據(jù)條件找到滿足AB=BF的AB與BC滿足的數(shù)量關(guān)系即可.
【考點(diǎn)精析】利用平行四邊形的性質(zhì)和菱形的判定方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央電視臺(tái)舉辦的“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”節(jié)目受到中學(xué)生的廣泛關(guān)注,某中學(xué)為了了解學(xué)生對(duì)觀看“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”節(jié)目的喜愛(ài)程度,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計(jì)圖.在條形圖中,從左向右依次為A類(lèi)(非常喜歡),B類(lèi)(較喜歡),C類(lèi)(一般),D類(lèi)(不喜歡),請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問(wèn)題

(1)寫(xiě)出本次抽樣調(diào)查的樣本容量;
(2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若該校有2000名學(xué)生.請(qǐng)你估計(jì)觀看“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”節(jié)目不喜歡的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人相約登山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息,下列說(shuō)法正確的個(gè)數(shù)為( ) (1 )甲登山上升的速度是每分鐘10米;(2)乙在A地時(shí)距地面的高度b為30米;(3)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,乙登山1分鐘時(shí),距地面的高度為15米;(4)登山時(shí)間為4分鐘,9分鐘,15分鐘時(shí),甲、乙兩人距地面的高度差為50米.

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E.連接ED,若ED=EC.

(1)求證:AB=AC;
(2)填空:①若AB=6,CD=4,則BC=;
②連接OD,當(dāng)∠A的度數(shù)為時(shí),四邊形ODEB是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖: 第一步,分別以點(diǎn)A、D為圓心,以大于 AD的長(zhǎng)為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF.
若BD=6,AF=4,CD=3,則BE的長(zhǎng)是(

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+ 與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱(chēng)

(1)填空:點(diǎn)B的坐標(biāo)是;
(2)過(guò)點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過(guò)點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(zhǎng)(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)C關(guān)于直線BP的對(duì)稱(chēng)點(diǎn)C′恰好落在該拋物線的對(duì)稱(chēng)軸上,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=k(x+1)(x﹣ )與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=2 ,AD為BC邊上的高,動(dòng)點(diǎn)P在AD上,從點(diǎn)A出發(fā),沿A→D方向運(yùn)動(dòng),設(shè)AP=x,△ABP的面積為S1 , 矩形PDFE的面積為S2 , y=S1+S2 , 則y與x的關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年3月31日是全國(guó)中小學(xué)生安全教育日,某校全體學(xué)生參加了“珍愛(ài)生命,預(yù)防溺水”專(zhuān)題活動(dòng),學(xué)習(xí)了游泳“五不準(zhǔn)”,為了了解學(xué)生對(duì)“五不準(zhǔn)”的知曉情況,隨機(jī)抽取了200名學(xué)生作調(diào)查,請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖解答問(wèn)題:
(1)求在這次調(diào)查中,“能答5條”人數(shù)的百分比和“僅能答3條”的人數(shù);
(2)若該校共有2000名學(xué)生,估計(jì)該校能答3條不準(zhǔn)以上(含3條)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案