【題目】如圖,Rt△ABC中,∠ACB=90°,AC=16,BC=4,D為AB上一點(diǎn),DE⊥AC于點(diǎn)E,DE=1,P為CE上一動(dòng)點(diǎn),設(shè)CP的長(zhǎng)為a.
(1)求CE的長(zhǎng);
(2)a為何值時(shí),△DEP與△BCP相似?
(3)當(dāng)PD+PB有最小值時(shí),求a的值及最小值.
【答案】(1)CE=12;(2)a的值為或6+4或6-;(3)13.
【解析】
(1)證明三角形ADE與三角形ABC相似,根據(jù)對(duì)應(yīng)邊成比例,且AE=16-CE,可解得CE的值.
(2)此時(shí)分為兩種情況進(jìn)行談?wù),分別是△DEP∽△BCP與△DEP∽△PCB.
(3)找到B點(diǎn)關(guān)于AC的對(duì)稱點(diǎn)F,當(dāng)D與F在同一直線上時(shí),PD+PB最短.
(1)∵DE⊥AC ∠AED=90°=∠ACB 又∠A公共
∴△ADE∽△ABC ∴ 即,CE=12.
(2)分兩種情況:①△DEP∽△BCP,此時(shí),即,a=
②△DEP∽△PCB,此時(shí),即,,
∴a的值為或6+4或6-.
(3)
延長(zhǎng)BC至點(diǎn)F,使CF=CB,連接DF交CE于點(diǎn)P,如圖:
∠DPE=∠CPF,∠DEP=∠PCF,則△DEP∽△FCP
于是,得 a=.
此時(shí)BP=,DP=,最小值為13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形紙片ABCD中,∠B=∠D=90°,點(diǎn)E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點(diǎn)B,D恰好都和點(diǎn)G重合,∠EAF=45°.
(1)求證:四邊形ABCD是正方形;
(2)求證:三角形ECF的周長(zhǎng)是四邊形ABCD周長(zhǎng)的一半;
(3)若EC=FC=1,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是E、D.
(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);
(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是邊長(zhǎng)為的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長(zhǎng),交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC,連接OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連接DE,作DF⊥DE,交OA于點(diǎn)F,連接EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過(guò)程中,的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出的值.
(3)連接AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點(diǎn),連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫(xiě)出y1> y2時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△的頂點(diǎn)、在坐標(biāo)軸上,點(diǎn)的坐標(biāo)是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點(diǎn)落在函數(shù)y=-.如果此時(shí)四邊形的面積等于,那么點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,頂點(diǎn)在第一象限內(nèi),拋物線(常數(shù))的頂點(diǎn)為正方形對(duì)角線上一動(dòng)點(diǎn).
(1)當(dāng)拋物線經(jīng)過(guò)兩點(diǎn)時(shí),求拋物線的解析式;
(2)若拋物線與直線相交于另一點(diǎn)(非拋物線頂點(diǎn),且在第一象限內(nèi)),求證:長(zhǎng)是定值;
(3)根據(jù)(2)的結(jié)論,取的中點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在海灣森林公園放風(fēng)箏.如圖所示,小明在A處,風(fēng)箏飛到C處,此時(shí)線長(zhǎng)BC為40米,若小明雙手牽住繩子的底端B距離地面1.5米,從B處測(cè)得C處的仰角為60°,求此時(shí)風(fēng)箏離地面的高度CE.(計(jì)算結(jié)果精確到0.1米,≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com