如圖.拋物線與x軸相交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C.

【小題1】求點(diǎn)A、點(diǎn)B和點(diǎn)C的坐標(biāo)
【小題2】求直線AC的解析式
【小題3】設(shè)點(diǎn)M是第二象限內(nèi)拋物線上的一點(diǎn),且=6,求點(diǎn)M的坐標(biāo).
p;【答案】
【小題1】A(-3,0)  B.(1,0),C(0,3)
【小題2】y=x+3
【小題3】M(-2,3)解析:
解:(1)令,(x+3)(x-1)=0,
A(-3,0)  B.(1,0),C(0,3)
(2)設(shè)直線AC的解析式為y=kx+b
由題意,得  解之得,y=x+3.
(3)設(shè)M點(diǎn)的坐標(biāo)為(x,)
AB=4,因?yàn)镸在第二象限,所以>0,所以=6
解之,得, 當(dāng)x=0時(shí),y=3(不合題意)  當(dāng)x=-2時(shí),y=3.所以M點(diǎn)的坐標(biāo)為(-2,3)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A(5,-4),⊙A與x軸分別相交于點(diǎn)B、C,⊙A與y軸相且于點(diǎn)D,
(1)求證過D、B、C三點(diǎn)的拋物線的解析式;
(2)連接BD,求tan∠BDC的值;
(3)點(diǎn)P是拋物線頂點(diǎn),線段DE是直徑,直線PC與直線DE相交于點(diǎn)F,
∠PFD的平分線FG交DC于G,求sin∠CGF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)B(-2,0)C(-4,0),過點(diǎn)B,C的⊙M與直線x=-1相切于點(diǎn)精英家教網(wǎng)A(A在第二象限),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)是A1,直線AA1與x軸相交點(diǎn)P
(1)求證:點(diǎn)A1在直線MB上;
(2)求以M為頂點(diǎn)且過A1的拋物線的解析式;
(3)設(shè)過點(diǎn)A1且平行于x軸的直線與(2)中的拋物線的另一交點(diǎn)為D,當(dāng)⊙D與⊙M相切時(shí),求⊙D的半徑和切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)如圖,拋物線y=
1
4
x2+bx+c的頂點(diǎn)為M,對(duì)稱軸是直線x=1,與x軸的交點(diǎn)為A(-3,0)和B.將拋物線y=
1
4
x2+bx+c繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)M1,A1為點(diǎn)M,A旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),旋轉(zhuǎn)后的拋物線與y軸相交于C,D兩點(diǎn).
(1)寫出點(diǎn)B的坐標(biāo)及求拋物線y=
1
4
x2+bx+c的解析式;
(2)求證:A,M,A1三點(diǎn)在同一直線上;
(3)設(shè)點(diǎn)P是旋轉(zhuǎn)后拋物線上DM1之間的一動(dòng)點(diǎn),是否存在一點(diǎn)P,使四邊形PM1MD的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及四邊形PM1MD的面積;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸相交點(diǎn)C(0,
3
).
(1)求該二次函數(shù)解析式;
(2)連接AC、BC,點(diǎn)M、N分別是線段AB、BC上的動(dòng)點(diǎn),且始終滿足BM=BN,連接MN.
①將△BMN沿MN翻折,B點(diǎn)能恰好落在AC邊上的P處嗎?若能,請(qǐng)判斷四邊形BMPN的形狀并求出PN的長(zhǎng);若不能,請(qǐng)說明理由.   
②將△BMN沿MN翻折,B點(diǎn)能恰好落在此拋物線上嗎?若能,請(qǐng)直接寫出此時(shí)B點(diǎn)關(guān)于MN的對(duì)稱點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•相城區(qū)模擬)如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作CD⊥y軸交該拋物線于點(diǎn)D,且AB=2,CD=4.
(1)該拋物線的對(duì)稱軸為
直線x=2
直線x=2
,B點(diǎn)坐標(biāo)為(
3,0
3,0
),CO=
3
3

(2)若P為線段OC上的一個(gè)動(dòng)點(diǎn),四邊形PBQD是平行四邊形,連接PQ.試探究:
①是否存在這樣的點(diǎn)P,使得PQ2=PB2+PD2?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
②當(dāng)PQ長(zhǎng)度最小時(shí),求出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案