分析 過A作關(guān)于直線MN的對稱點A′,連接A′B,由軸對稱的性質(zhì)可知A′B即為PA+PB的最小值,由對稱的性質(zhì)可知$\widehat{AN}$=$\widehat{A′N}$,再由圓周角定理可求出∠A′ON的度數(shù),再由勾股定理即可求解.
解答 解:過A作關(guān)于直線MN的對稱點A′,連接A′B,由軸對稱的性質(zhì)可知A′B即為PA+PB的最小值,
連接OB,OA′,AA′,
∵AA′關(guān)于直線MN對稱,
∴$\widehat{AN}$=$\widehat{A′N}$,
∵∠AMN=40°,
∴∠A′ON=80°,∠BON=40°,
∴∠A′OB=120°,
過O作OQ⊥A′B于Q,
在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=2$\sqrt{3}$,
即PA+PB的最小值2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.
點評 本題考查的是軸對稱-最短路線問題,圓周角定理及勾股定理,解答此題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com