【題目】如圖,在中,,,的平分線與AB的垂直平分線交于點O,將沿EF折疊,若點C與點O恰好重合,則______

【答案】

【解析】

連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得OA=OB,根據(jù)等邊對等角可得∠ABO=BAO,再求出∠OBC,然后判斷出點O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對等角求出∠OCB=OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對等角求出∠COE,再利用三角形的內(nèi)角和定理列式計算即可

解:如圖,連接OBOC,

,AO的平分線,

,

,

AB的垂直平分線,

,

,

的平分線,

,

OBC的垂直平分線上,

AB的垂直平分線,

O的外心,

,

沿BC上,FAC折疊,點C與點O恰好重合,

,

,

中,

故答案為:104°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】原題呈現(xiàn):若a2+b2+4a2b+50,求a、b的值.

方法介紹:

①看到a2+4a可想到如果添上常數(shù)4恰好就是a2+4a+4=(a+22,這個過程叫做配方,同理b22b+1=(b12,恰好把常數(shù)5分配完;

②從而原式可以化為(a+22+b120由平方的非負性可得a+20b10

經(jīng)驗運用:

1)若4a2+b220a+6b+340,求a+b的值.

2)若a2+5b2+c22ab4b+6c+100,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩組同學玩“兩人背夾球”比賽,即:每組兩名同學用背部夾著球跑完規(guī)定的路程,若途中球掉下時須撿起并回到掉球處繼續(xù)賽跑,用時少者勝.結(jié)果:甲組兩位同學掉了球;乙組兩位同學順利跑完.設比賽中同學距出發(fā)點的距離用y表示,單位是米;比賽時間用x表示,單位是秒.兩組同學比賽過程用圖像表示如下:

(1)這是一次 米的背夾球比賽;

(2)線段 表示甲組兩位同學在比賽中途掉球,耽誤了 秒;

(3)甲組同學到達終點用了 秒,乙組同學到達終點用了 秒,獲勝的是 組同學;

(4)請直接寫出C點坐標,并說明點C的實際意義.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某公司租用兩種型號的貨車各一輛,分別將產(chǎn)品運往甲市與乙市(運費收費標準如下表),已知該公司到乙市的距離比到甲市的距離遠30km,B車的總運費比A車的總運費少1080元.

1)求這家公司分別到甲、乙兩市的距離;

2)若A,B兩車同時從公司出發(fā),其中B車以60km/h的速度勻速駛向乙市,而A車根據(jù)路況需要,先以45kmh的速度行駛了3小吋,再以75km/h的速度行駒到達甲市.

①在行駛的途中,經(jīng)過多少時間,A,B兩車到各自目的地的距離正好相等?

②若公司希望B車能與A車同吋到達目的地,B車必須在以60km/h的速度行駛一段時間后提速,若提速后的速度為70km/h(速度從60km/h提速到70km/h的時間忽略不汁),則B車應該在行駛    小時后提速.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學家楊輝(13世紀)所著的《詳解九章算術》一書中,用如下的三角形解釋(a+b)n的展開式中各項的系數(shù),此三角形稱為“楊輝三角”,

即:(a+b)1=a+b

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

根據(jù)“楊輝三角”計算出(a+b)10的展開式中第三項的系數(shù)為(  )

A.10B.45C.46D.50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在A,B兩個超市的標價相同根據(jù)商場的活動方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5請求出這種籃球的標價;

(2)學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,AD9,點E在邊AD上,AE1,過E、D兩點的圓的圓心O在邊AD的上方,直線BOAD于點F,作DGBO,垂足為G.當△ABF與△DFG全等時,⊙O的半徑為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小宇想測量位于池塘兩端的A,B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A,B兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖案中,既是軸對稱圖形又是中心對稱圖形的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案