【題目】方成同學看到一則材料,甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地,設乙行駛的時間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關系如圖1所示,方成思考后發(fā)現(xiàn)了圖1的部分正確信息,乙先出發(fā)1h,甲出發(fā)20分鐘后與乙相遇,…,請你幫助方成同學解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達式;
(2)當15<y<25時,求t的取值范圍;
(3)分別求出甲、乙行駛的路程S甲、S乙與時間t的函數(shù)表達式,并在圖2所給的直角坐標系中分別畫出它們的圖象.
【答案】
(1)解:設線段BC所在直線的函數(shù)表達式為y=k1t+b1,
將點B( ,0),點C(2,30)代入函數(shù)解析式,得
,解得: .
故線段BC所在直線的函數(shù)表達式為y=45t﹣60( ≤t≤2).
設線段CD所在直線的函數(shù)表達式為y=k2t+b2,
將點C(2,30),點D(4,0)代入函數(shù)解析式,得
,解得: .
故線段CD所在直線的函數(shù)表達式為y=﹣15t+60(2<t≤4)
(2)解:乙騎車的速度為30÷(4﹣2)=15(km/h),
∴線段OA所在直線的函數(shù)表達式為y=15t(0≤t≤1),
∴點A的縱坐標為15.
當15<y<25時,即15<45t﹣60<25或15<﹣15t+60<25,
解得: <t< 或 <t<3.
故當15<y<25時,t的取值范圍為 <t< 或 <t<3
(3)解:甲開車的速度15÷( ﹣1)+15=60(km/h),
∴S甲=60(t﹣1)=60t﹣60(1≤t≤2),S乙=15t(0≤t≤4).
所畫圖形如圖.
【解析】(1)設線段BC所在直線的函數(shù)表達式為y=k1t+b1 , 將點B、C的坐標代入其中得出關于k1、b1的二元一次方程組,解方程組即可求出結論;設線段CD所在直線的函數(shù)表達式為y=k2t+b2 , 將點C、D的坐標代入其中得出關于k2、b2的二元一次方程組,解方程組即可得出結論;(2)根據線段CD可求出乙騎車的速度,從而得出線段OA的函數(shù)解析式,結合題意列出關于t的一元一次不等式,解不等式即可得出結論;(3)根據圖象求出甲開車的速度,由路程=速度×時間得出S甲、S乙與時間t的函數(shù)表達式,畫出圖形即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,線段AB經過平移得到線段A′B′,其中點A,B的對應點分別為點A′,B′,這四個點都在格點上,則這四個點組成的四邊形ABB′A′的面積是( )
A.4
B.6
C.9
D.13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個函數(shù)圖象經過(1,﹣4),(2,﹣2)兩點,在自變量x的某個取值范圍內,都有函數(shù)值y隨x的增大而減小,則符合上述條件的函數(shù)可能是( )
A.正比例函數(shù)
B.一次函數(shù)
C.反比例函數(shù)
D.二次函數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2﹣4sinαx+2=0有兩個等根,則銳角α的度數(shù)是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ACB中,C為直角頂點,∠ABC=25°,O為斜邊中點.將OA繞著點O逆時針旋轉θ°(0<θ<180)至OP,當△BCP恰為軸對稱圖形時,θ的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠家新開發(fā)的一種摩托車如圖所示,它的大燈A射出的光線AB、AC與地面MN的夾角分別為8°和10°,大燈A離地面距離1m.
(1)該車大燈照亮地面的寬度BC約是多少(不考慮其它因素)?
(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應時間是0.2s,從發(fā)現(xiàn)危險到摩托車完全停下所行駛的距離叫做最小安全距離,某人以60km/h的速度駕駛該車,從60km/h到摩托車停止的剎車距離是 m,請判斷該車大燈的設計是否能滿足最小安全距離的要求,請說明理由.參考數(shù)據:sin8°≈ ,tan8°≈ ,sin10°≈ ,tan10°≈ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點C作CE⊥AD于E,連接BE,在點D移動的過程中,BE的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中結論正確的個數(shù)為( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列敘述中:
①一組對邊相等的四邊形是平行四邊形;
②函數(shù)y= 中,y隨x的增大而減。
③有一組鄰邊相等的平行四邊形是菱形;
④有不可能事件A發(fā)生的概率為0.0001.
正確的敘述有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com