如圖是一個(gè)圓錐與其側(cè)面展開(kāi)圖,已知圓錐的底面半徑是2,母線長(zhǎng)是6.
(1)求這個(gè)圓錐的高和其側(cè)面展開(kāi)圖中∠ABC的度數(shù);
(2)如果A是底面圓周上一點(diǎn),從點(diǎn)A拉一根繩子繞圓錐側(cè)面一圈再回到A點(diǎn),求這根繩子的最短長(zhǎng)度.
分析:(1)根據(jù)勾股定理直接求出圓錐的高,再利用圓錐側(cè)面展開(kāi)圖弧長(zhǎng)與其底面周長(zhǎng)的長(zhǎng)度關(guān)系,求出側(cè)面展開(kāi)圖中∠ABC的度數(shù)即可;
(2)首先求出BD的長(zhǎng),再利用勾股定理求出AD以及AC的長(zhǎng)即可.
解答:解:(1)圓錐的高=
62-22
=4
2
,
底面圓的周長(zhǎng)等于:2π×2=
nπ×6
180

解得:n=120°;
                
(2)連結(jié)AC,過(guò)B作BD⊥AC于D,則∠ABD=60°.
由AB=6,可求得BD=3,
∴AD═3
3
,
AC=2AD=6
3
,
即這根繩子的最短長(zhǎng)度是6
3
點(diǎn)評(píng):此題考查了圓錐的計(jì)算;得到圓錐的底面圓的周長(zhǎng)和扇形弧長(zhǎng)相等是解決本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是一個(gè)圓錐,它的高為4
2
,母線長(zhǎng)為6,A是底面圓周上的定點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿圓錐的側(cè)面運(yùn)動(dòng)一周后仍回到A點(diǎn),則點(diǎn)P經(jīng)過(guò)路線的長(zhǎng)度的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•邵東縣模擬)如圖是一個(gè)圓錐的主視圖,則該圓錐的側(cè)面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)圓錐的側(cè)面展開(kāi)圖是90°的扇形.
(1)求圓錐的母線長(zhǎng)l與底面半徑r之比;
(2)若底面半徑r=2,求圓錐的高及側(cè)面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖是一個(gè)圓錐與其側(cè)面展開(kāi)圖,已知圓錐的底面半徑是2,母線長(zhǎng)是6.
(1)求這個(gè)圓錐的高和其側(cè)面展開(kāi)圖中∠ABC的度數(shù);
(2)如果A是底面圓周上一點(diǎn),從點(diǎn)A拉一根繩子繞圓錐側(cè)面一圈再回到A點(diǎn),求這根繩子的最短長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案