(2010•雙鴨山)已知在Rt△ABC中,∠ABC=90°,∠A=30°,點(diǎn)P在AC上,且∠MPN=90°.當(dāng)點(diǎn)P為線段AC的中點(diǎn),點(diǎn)M、N分別在線段AB、BC上時(如圖1),過點(diǎn)P作PE⊥AB于點(diǎn)E,PF⊥BC于點(diǎn)F,可證Rt△PME∽Rt△PNF,得出PN=PM.(不需證明)當(dāng)PC=PA,點(diǎn)M、N分別在線段AB、BC或其延長線上,如圖2、圖3這兩種情況時,請寫出線段PN、PM之間的數(shù)量關(guān)系,并任選取一給予證明.

【答案】分析:圖2和圖3的結(jié)論一致,求解的方法也相同,以圖2為例:過P作PE⊥AB于E,作PF⊥BC于F,仿照題干的做法,先證△PEM∽△PFN,得PN:PM=PF:PE;在Rt△ABC中,PF=PC,PE=PA,聯(lián)立PC、PA的比例關(guān)系,即可得到PF:PE的值,從而求得PN、PM的比例關(guān)系.
解答:解:
如圖2,如圖3中都有結(jié)論:PN=PM.(2分)
選如圖2:在Rt△ABC中,過點(diǎn)P作PE⊥AB于E,PF⊥BC于點(diǎn)F;
∴四邊形BFPE是矩形,∴∠EPF=90°,
∵∠EPM+∠MPF=∠FPN+∠MPF=90°,
可知∠EPM=∠FPN,∴△PFN∽△PEM,(2分)
=;(1分)
又∵Rt△AEP和Rt△PFC中:∠A=30°,∠C=60°,
∴PF=PC,PE=PA,(1分)
==;(1分)
∵PC=PA,∴=,即:PN=PM.(1分)
若選如圖3,其證明過程同上(其他方法如果正確,可參照給分)
點(diǎn)評:此題主要考查的是相似三角形的判定和性質(zhì),由于題干部分已經(jīng)給出了解題的思路,使得此題的難度有所降低.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•雙鴨山)如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點(diǎn)過點(diǎn)A的直線交y軸正半軸與點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點(diǎn)P,使得S△ABP=S△AOB,請直接寫出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形?若存在,請直接寫出點(diǎn)H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•雙鴨山)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,3),(-3,0),(2,-5),且與x軸交于A、B兩點(diǎn).
(1)試確定此二次函數(shù)的解析式;
(2)判斷點(diǎn)P(-2,3)是否在這個二次函數(shù)的圖象上?如果在,請求出△PAB的面積;如果不在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省齊齊哈爾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•雙鴨山)如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點(diǎn)過點(diǎn)A的直線交y軸正半軸與點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點(diǎn)P,使得S△ABP=S△AOB,請直接寫出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形?若存在,請直接寫出點(diǎn)H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省大興安嶺地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•雙鴨山)如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點(diǎn)過點(diǎn)A的直線交y軸正半軸與點(diǎn)M,且點(diǎn)M為線段OB的中點(diǎn).
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點(diǎn)P,使得S△ABP=S△AOB,請直接寫出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A,B,M,H為頂點(diǎn)的四邊形是等腰梯形?若存在,請直接寫出點(diǎn)H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省大興安嶺地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•雙鴨山)因南方旱情嚴(yán)重,乙水庫的蓄水量以每天相同的速度持續(xù)減少.為緩解旱情,北方甲水庫立即以管道運(yùn)輸?shù)姆绞浇o予以支援下圖是兩水庫的蓄水量y(萬米3)與時間x(天)之間的函數(shù)圖象.在單位時間內(nèi),甲水庫的放水量與乙水庫的進(jìn)水量相同(水在排放、接收以及輸送過程中的損耗不計(jì)).通過分析圖象回答下列問題:
(1)甲水庫每天的放水量是多少萬立方米?
(2)在第幾天時甲水庫輸出的水開始注入乙水庫?此時乙水庫的蓄水量為多少萬立方米?
(3)求直線AD的解析式.

查看答案和解析>>

同步練習(xí)冊答案