不相等的兩角a和β的兩邊分別平行,其中a角比β角的3倍少20°,則a的大小是________.

130°
分析:角a與角β的兩邊分別平行,本題中a≠β,故a+β=180°.
解答:∵a≠β且兩角的兩邊分別平行
∴a+β=180°
∵a=3β-20°
∴a=130°,β=50°.
故答案為130°.
點(diǎn)評:本題考查了平行線的性質(zhì).同一平面內(nèi),對邊平行的兩角相等或互補(bǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

不相等的兩角a和β的兩邊分別平行,其中a角比β角的3倍少20°,則a的大小是
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市鼓樓區(qū)中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

【問題提出】
規(guī)定:四條邊對應(yīng)相等,四個角對應(yīng)相等的兩個四邊形全等.
我們借助學(xué)習(xí)“三角形全等的判定”獲得的經(jīng)驗(yàn)與方法對“全等四邊形的判定”進(jìn)行探究.
【初步思考】
在兩個四邊形中,我們把“一條邊對應(yīng)相等”或“一個角對應(yīng)相等”稱為一個條件,滿足4個條件的兩個四邊形不一定全等,如邊長相等的正方形與菱形就不一定全等.類似地,我們?nèi)菀字纼蓚四邊形全等至少需要5個條件.
【深入探究】
小莉所在學(xué)習(xí)小組進(jìn)行了研究,她們認(rèn)為5個條件可分為以下四種類型:
Ⅰ一條邊和四個角對應(yīng)相等;
Ⅱ二條邊和三個角對應(yīng)相等;
Ⅲ三條邊和二個角對應(yīng)相等;
Ⅳ四條邊和一個角對應(yīng)相等.
(1)小明認(rèn)為“Ⅰ一條邊和四個角對應(yīng)相等”的兩個四邊形不一定全等,請你舉例說明.
(2)小紅認(rèn)為“Ⅳ四條邊和一個角對應(yīng)相等”的兩個四邊形全等,請你結(jié)合下圖進(jìn)行證明.
已知:如圖,          
求證:                     
證明:

(3)小剛認(rèn)為還可以對“Ⅱ二條邊和三個角對應(yīng)相等”進(jìn)一步分類,他以四邊形和四邊形為例,分為以下四類:
,,,,
,,,;
,,;
,,,;
其中能判定四邊形和四邊形全等的是     (填序號),概括可得“全等四邊形的判定方法”,這個判定方法是         
(4)小亮經(jīng)過思考認(rèn)為也可以對“Ⅲ三條邊和二個角對應(yīng)相等”進(jìn)一步分類,請你仿照小剛的方法先進(jìn)行分類,再概括得出一個全等四邊形的判定方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市鼓樓區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

【問題提出】

規(guī)定:四條邊對應(yīng)相等,四個角對應(yīng)相等的兩個四邊形全等.

我們借助學(xué)習(xí)“三角形全等的判定”獲得的經(jīng)驗(yàn)與方法對“全等四邊形的判定”進(jìn)行探究.

【初步思考】

在兩個四邊形中,我們把“一條邊對應(yīng)相等”或“一個角對應(yīng)相等”稱為一個條件,滿足4個條件的兩個四邊形不一定全等,如邊長相等的正方形與菱形就不一定全等.類似地,我們?nèi)菀字纼蓚四邊形全等至少需要5個條件.

【深入探究】

小莉所在學(xué)習(xí)小組進(jìn)行了研究,她們認(rèn)為5個條件可分為以下四種類型:

Ⅰ一條邊和四個角對應(yīng)相等;

Ⅱ二條邊和三個角對應(yīng)相等;

Ⅲ三條邊和二個角對應(yīng)相等;

Ⅳ四條邊和一個角對應(yīng)相等.

(1)小明認(rèn)為“Ⅰ一條邊和四個角對應(yīng)相等”的兩個四邊形不一定全等,請你舉例說明.

(2)小紅認(rèn)為“Ⅳ四條邊和一個角對應(yīng)相等”的兩個四邊形全等,請你結(jié)合下圖進(jìn)行證明.

已知:如圖,          

求證:                     

證明:

(3)小剛認(rèn)為還可以對“Ⅱ二條邊和三個角對應(yīng)相等”進(jìn)一步分類,他以四邊形和四邊形為例,分為以下四類:

,,,;

,,,;

,,,;

,,,,;

其中能判定四邊形和四邊形全等的是     (填序號),概括可得“全等四邊形的判定方法”,這個判定方法是         

(4)小亮經(jīng)過思考認(rèn)為也可以對“Ⅲ三條邊和二個角對應(yīng)相等”進(jìn)一步分類,請你仿照小剛的方法先進(jìn)行分類,再概括得出一個全等四邊形的判定方法.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【問題提出】

規(guī)定:四條邊對應(yīng)相等,四個角對應(yīng)相等的兩個四邊形全等.

我們借助學(xué)習(xí)“三角形全等的判定”獲得的經(jīng)驗(yàn)與方法對“全等四邊形的判定”進(jìn)行探究.

【初步思考】

在兩個四邊形中,我們把“一條邊對應(yīng)相等”或“一個角對應(yīng)相等”稱為一個條件,滿足4個條件的兩個四邊形不一定全等,如邊長相等的正方形與菱形就不一定全等.類似地,我們?nèi)菀字纼蓚四邊形全等至少需要5個條件.

【深入探究】

小莉所在學(xué)習(xí)小組進(jìn)行了研究,她們認(rèn)為5個條件可分為以下四種類型:

Ⅰ一條邊和四個角對應(yīng)相等;

Ⅱ二條邊和三個角對應(yīng)相等;

Ⅲ三條邊和二個角對應(yīng)相等;

Ⅳ四條邊和一個角對應(yīng)相等.

(1)小明認(rèn)為“Ⅰ一條邊和四個角對應(yīng)相等”的兩個四邊形不一定全等,請你舉例說明.

(2)小紅認(rèn)為“Ⅳ四條邊和一個角對應(yīng)相等”的兩個四邊形全等,請你結(jié)合下圖進(jìn)行證明.

已知:如圖,          

求證:                     

證明:

(3)小剛認(rèn)為還可以對“Ⅱ二條邊和三個角對應(yīng)相等”進(jìn)一步分類,他以四邊形和四邊形為例,分為以下四類:

,,,;

,,;

,,,,;

,,,;

其中能判定四邊形和四邊形全等的是      (填序號),概括可得“全等四邊形的判定方法”,這個判定方法是         

(4)小亮經(jīng)過思考認(rèn)為也可以對“Ⅲ三條邊和二個角對應(yīng)相等”進(jìn)一步分類,請你仿照小剛的方法先進(jìn)行分類,再概括得出一個全等四邊形的判定方法.

查看答案和解析>>

同步練習(xí)冊答案