(2001•沈陽)已知,,求a3b+ab3的值.
【答案】分析:先把條件化簡后再代入化簡后的代數(shù)式中求解.
解答:解:∵a==-1-,b==-1
∴a3b+ab3=ab(a2+b2)=-1(3+3)=-6.
點評:主要考查了實數(shù)的運算.無理數(shù)的運算法則與有理數(shù)的運算法則是一樣的.在進行根式的運算時要先化簡再計算可使計算簡便.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《三角形》(04)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年遼寧省沈陽市中考數(shù)學試卷(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年遼寧省沈陽市中考數(shù)學試卷(解析版) 題型:選擇題

(2001•沈陽)已知變量y和x成反比例,當x=3時,y=-6,那么當y=3時,x的值是( )
A.6
B.-6
C.9
D.-9

查看答案和解析>>

同步練習冊答案