(2010•金華)已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0).
(1)求二次函數(shù)的解析式;
(2)填空:要使該二次函數(shù)的圖象與x軸只有一個交點(diǎn),應(yīng)把圖象沿y軸向上平移______個單位.
【答案】分析:(1)將A(2,-3),B(-1,0)代入y=ax2+bx-3,用待定系數(shù)法即可求得二次函數(shù)的解析式;
(2)利用頂點(diǎn)坐標(biāo)公式可求出圖象沿y軸向上平移的單位.
解答:解:(1)由已知,有,即,解得
∴所求的二次函數(shù)的解析式為y=x2-2x-3.

(2)∵-=1,=-4.
∴頂點(diǎn)坐標(biāo)為(1,-4).
∵二次函數(shù)的圖象與x軸只有一個交點(diǎn),
∴應(yīng)把圖象沿y軸向上平移4個單位.
點(diǎn)評:考查利用待定系數(shù)法求二次函數(shù)關(guān)系式時,要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.二次函數(shù)的圖象與x軸只有一個交點(diǎn),即頂點(diǎn)的縱坐標(biāo)為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•金華)已知點(diǎn)P的坐標(biāo)為(m,0),在x軸上存在點(diǎn)Q(不與P點(diǎn)重合),以PQ為邊作正方形PQMN,使點(diǎn)M落在反比例函數(shù)y=-的圖象上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點(diǎn)M在第四象限,另一個正方形的頂點(diǎn)M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-,P點(diǎn)坐標(biāo)為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點(diǎn)M1的坐標(biāo);M1的坐標(biāo)是______.
(2)請你通過改變P點(diǎn)坐標(biāo),對直線M1M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得k﹦______,若點(diǎn)P的坐標(biāo)為(m,0)時,則b﹦______;
(3)依據(jù)(2)的規(guī)律,如果點(diǎn)P的坐標(biāo)為(6,0),請你求出點(diǎn)M1和點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2010•金華)已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0).
(1)求二次函數(shù)的解析式;
(2)填空:要使該二次函數(shù)的圖象與x軸只有一個交點(diǎn),應(yīng)把圖象沿y軸向上平移______個單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•金華)已知點(diǎn)P的坐標(biāo)為(m,0),在x軸上存在點(diǎn)Q(不與P點(diǎn)重合),以PQ為邊作正方形PQMN,使點(diǎn)M落在反比例函數(shù)y=-的圖象上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點(diǎn)M在第四象限,另一個正方形的頂點(diǎn)M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-,P點(diǎn)坐標(biāo)為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點(diǎn)M1的坐標(biāo);M1的坐標(biāo)是______.
(2)請你通過改變P點(diǎn)坐標(biāo),對直線M1M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得k﹦______,若點(diǎn)P的坐標(biāo)為(m,0)時,則b﹦______;
(3)依據(jù)(2)的規(guī)律,如果點(diǎn)P的坐標(biāo)為(6,0),請你求出點(diǎn)M1和點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省金華市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•金華)已知點(diǎn)P的坐標(biāo)為(m,0),在x軸上存在點(diǎn)Q(不與P點(diǎn)重合),以PQ為邊作正方形PQMN,使點(diǎn)M落在反比例函數(shù)y=-的圖象上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點(diǎn)M在第四象限,另一個正方形的頂點(diǎn)M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-,P點(diǎn)坐標(biāo)為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點(diǎn)M1的坐標(biāo);M1的坐標(biāo)是______.
(2)請你通過改變P點(diǎn)坐標(biāo),對直線M1M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得k﹦______,若點(diǎn)P的坐標(biāo)為(m,0)時,則b﹦______;
(3)依據(jù)(2)的規(guī)律,如果點(diǎn)P的坐標(biāo)為(6,0),請你求出點(diǎn)M1和點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案