請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=
3
,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.?
李明同學的思路是:將△BPC繞點B順時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進而求出等邊△ABC的邊長為
7
,問題得到解決.
請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.?
精英家教網(wǎng)
分析:(1)參照題目給出的解題思路,可將△BPC繞點B逆時針旋轉(zhuǎn)90°,得到△BP′A,根據(jù)旋轉(zhuǎn)的性質(zhì)知:
△BPC≌△BP′A,進而可判斷出△BPP′是等腰直角三角形,可得∠BP′P=45°;然后根據(jù)AP′、PP′、PA的長,利用勾股定理得到△APP′是直角三角形的結(jié)論,可得∠AP′P=90°,即可求得∠BP′A的度數(shù),進而可得∠BPC的度數(shù).
(2)過B作AP′的垂線,交AP′的延長線于E,易知△BEP′是等腰直角三角形,即可得到P′E、BE的長,進而可在Rt△ABE中,利用勾股定理求得正方形的邊長.
解答:精英家教網(wǎng)解:(1)如圖,
將△BPC繞點B逆時針旋轉(zhuǎn)90°,得△BP′A,則△BPC≌△BP′A.
∴AP′=PC=1,BP=BP′=
2
;
連接PP′,
在Rt△BP′P中,
∵BP=BP′=
2
,∠PBP′=90°,
∴PP′=2,∠BP′P=45°;(2分)
在△AP′P中,AP′=1,PP′=2,AP=
5

12+22=(
5
)2
,即AP′2+PP′2=AP2;
∴△AP′P是直角三角形,即∠AP′P=90°,
∴∠AP′B=135°,
∴∠BPC=∠AP′B=135°.(4分)

(2)過點B作BE⊥AP′,交AP′的延長線于點E;則△BEP′是等腰直角三角形,
∴∠EP′B=45°,
∴EP′=BE=1,
∴AE=2;
∴在Rt△ABE中,由勾股定理,得AB=
5
;(7分)
∴∠BPC=135°,正方形邊長為
5
點評:此題主要考查了正方形的性質(zhì)、圖形的旋轉(zhuǎn)變換、勾股定理以及全等三角形等知識的綜合應用,由于題目給出了解題的思路使得此題的難度降低,但是題中輔助線的作法應該牢記.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:解方程(x2-1)2-5(x2-1)+4=0.
明明的做法是:將x2-1視為一個整體,然后設(shè)x2-1=y,則(x2-1)2=y2,原方程可化為y2-5y+4=0,解得y1=1,y2=4.
(1)當y=1時,x2-1=1,解得x=±
2

(2)當y=4時,x2-1=4,解得x=±
5

綜合(1)(2),可得原方程的解為x1=
2
,  x2=-
2
,  x3=
5
,  x4=-
5

請你參考明明同學的思路,解方程x4-x2-6=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 

(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•貴陽模擬)請閱讀下列材料:
問題:如圖1,圓柱的底面半徑為1dm,BC是底面直徑,圓柱高AB為5dm,求一只螞蟻從點A出發(fā)沿圓柱表面爬行到點C的最短路線,小明設(shè)計了兩條路線:
路線1:高線AB+底面直徑BC,如圖1所示.路線2:側(cè)面展開圖中的線段AC,如圖2所示.(結(jié)果保留π)

(1)設(shè)路線1的長度為L1,則L12=
49
49
.設(shè)路線2的長度為L2,則L22=
25+π2
25+π2
.所以選擇路線
2
2
(填1或2)較短.
(2)小明把條件改成:“圓柱的底面半徑為5dm,高AB為1dm”繼續(xù)按前面的路線進行計算.此時,路線1:L12=
121
121
.路線2:L22=
1+25π2
1+25π2
.所以選擇路線
1
1
(填1或2)較短.
(3)請你幫小明繼續(xù)研究:當圓柱的底面半徑為2dm,高為hdm時,應如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到點C的路線最短.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:問題:已知方程x2+x-3=0,求一個一元二次方程,使它的根分別是已知方程根的2倍
解:設(shè)所求方程的根為y,則y=2x,
所以x=
y
2

把x=
y
2
代入已知方程,得
(
y
2
)2+
y
2
-3=0

化簡,得y2+2y-12=0故所求方程為y2+2y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
(1)已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的3倍,則所求方程為
y2+3y-9=0
y2+3y-9=0

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù);
(3)已知關(guān)于x的方程x2-mx+n=0有兩個實數(shù)根,求一個方程,使它的根分別是已知方程根的平方.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:正方形ABCD中,M,N分別是直線CB、DC上的動點,∠MAN=45°,當∠MAN交邊CB、DC于點M、N(如圖①)時,線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?
小聰同學的思路是:延長CB至E使BE=DN,并連接AE,構(gòu)造全等三角形經(jīng)過推理使問題得到解決.請你參考小聰同學的思路,探究并解決下列問題:
(1)直接寫出上面問題中,線段BM,DN和MN之間的數(shù)量關(guān)系;
(2)當∠MAN分別交邊CB,DC的延長線于點M/N時(如圖②),線段BM,DN和MN之間的又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并加以證明;
(3)在圖①中,若正方形的邊長為16cm,DN=4cm,請利用(1)中的結(jié)論,試求MN的長.

查看答案和解析>>

同步練習冊答案