【題目】如圖,已知直線y=k1x+b與x軸、y軸相交于C、D兩點(diǎn),與y=交于A(m,2)、B(﹣2,n)兩點(diǎn).
(1)求m+n的值;
(2)連接OA、OB,若tan∠AOD+tan∠BOC=1.
①當(dāng)不等式k1x+b>時(shí),請(qǐng)結(jié)合圖象求x的取值范圍;
②設(shè)點(diǎn)E在y軸上,且滿足∠AEO+∠AOD=45°,求點(diǎn)E的坐標(biāo).
【答案】(1)m+n=0;(2) ①x>1或﹣2<x<0;②(0,5)或(0,﹣1).
【解析】
(1)利用點(diǎn)A,B在反比例函數(shù)上,代入反比例函數(shù)解析式中即可得出結(jié)論;
(2)①先表示出tan∠AOD和tan∠BOC,進(jìn)而用tan∠AOD+tan∠BOC=1,建立方程借助m+n=0,求出m,n即可得出點(diǎn)A,B坐標(biāo),最后利用圖象即可得出結(jié)論;
②分兩種情況,
Ⅰ、當(dāng)點(diǎn)E在AM上方時(shí),先求出AO==,再判斷出△AOM∽△E1ON,即可求出m的值.最后利用勾股定理求出OE1即可得出結(jié)論;
Ⅱ、當(dāng)點(diǎn)E在AM下方時(shí),利用對(duì)稱性即可得出結(jié)論.
解:∵點(diǎn)A(m,2),B(﹣2,n)在反比例函數(shù)y=,
∴k2=2m,k2=﹣2n,
∴2m+2n=0,
∴m+n=0;
(2)①如圖1,過(guò)點(diǎn)A作AM⊥y軸于M,過(guò)點(diǎn)B作BF⊥x軸于F,
在Rt△AOM中,tan∠AOM==,
在Rt△BOF中,tan∠BOF===﹣,
∵tan∠AOD+tan∠BOC=1,
∴+(﹣)=1,
∴m﹣n=2,
∵m+n=0,
∴m=1,n=﹣1,
∴A(1,2),B(﹣2,﹣1),
∵k1x+b>,
∴y1>y2,
∴當(dāng)x>1或﹣2<x<0時(shí),k1x+b>;
②如圖2,Ⅰ、當(dāng)點(diǎn)E在AM上方時(shí),過(guò)點(diǎn)E1作E1N⊥OA交OA的延長(zhǎng)線于N,
由題意知,∠E1AN=45°,
∴∠E1AN=∠AE1N=45°,
∴E1N=AN,
在Rt△OAM中,AM=1,OM=2,
∴AO==,
設(shè)E1N=AN=m,
∴ON=OA+AN=+m,
∵∠AOM=∠E1ON,∠AMO=∠E1NO,
∴△AOM∽△E1ON,
∴,
∴,
∴m=,由勾股定理得,E1A=,E1M=3,
∴OE1=5,
∴E1(0,5);
Ⅱ、當(dāng)點(diǎn)E在AM下方時(shí),由對(duì)稱性得,E2M=E1M=3,
∴OE2=1,
∴E2(0,﹣1),
綜合可知,點(diǎn)E的坐標(biāo)為(0,5)或(0,﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B的坐標(biāo)為(3,4),點(diǎn)D的坐標(biāo)為(2,0),E為AB上的點(diǎn),當(dāng)△CDE的周長(zhǎng)最小時(shí),點(diǎn)E的坐標(biāo)為( 。
A. (1,3) B. (3,1) C. (4,1) D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CD是Rt△ABC的高,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:DF是BF和CF的比例中項(xiàng);
(2)在AB上取一點(diǎn)G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,BC,已知A(0,3),C(3,0).
(1)求拋物線的關(guān)系式和tan∠BAC的值;
(2)P為拋物線上一動(dòng)點(diǎn),連接PA,過(guò)點(diǎn)P作PQ⊥OA交y軸于點(diǎn)Q,問(wèn):是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在AB上找一點(diǎn)M,使得OM+DM的值最小,直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,于點(diǎn),的平分線分別交、于、兩點(diǎn),為的中點(diǎn),的延長(zhǎng)線交于點(diǎn),連接,下列結(jié)論:①為等腰三角形;②;③;④.其中正確的結(jié)論有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過(guò)點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖反映是小明從家去食堂吃早餐,接著去圖書館讀報(bào),然后回家的過(guò)程.其中x表示時(shí)間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)食堂離小明家___________km;
(2)小明在食堂吃早餐用了 分鐘,在圖書館讀報(bào)用了______min;
(3)由圖象知:_________位于________和__________之間( 填“小明家”、“食堂”、“圖書館” )
(4)求小明從圖書館回家的平均速度是多少千米/時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地,甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí).由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時(shí)到達(dá)B地,甲乙兩車距A地的路程y(km)與乙車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示
(1)a= ,甲的速度是 km/h;
(2)求線段CF對(duì)應(yīng)的函數(shù)表達(dá)式,并求乙剛到達(dá)貨站時(shí),甲距B地還有多遠(yuǎn)?
(3)乙車出發(fā) min追上甲車?
(4)直接寫出甲出發(fā)多長(zhǎng)時(shí)間,甲乙兩車相距40km.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com