【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于,兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2) 請根據(jù)圖象直接寫出的取值范圍.

【答案】反比例函數(shù)的解析式為y2=.一次函數(shù)的解析式為y=x﹣1.(2)x<﹣20<x<4.

【解析】1)由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征可求出k2的值,進(jìn)而可得出反比例函數(shù)的解析式,由點B的縱坐標(biāo)結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征可求出點B的坐標(biāo),再由點A、B的坐標(biāo)利用待定系數(shù)法,即可求出一次函數(shù)的解析式;

(2)根據(jù)兩函數(shù)圖象的上下位置關(guān)系,找出y1<y2x的取值范圍.

(1)∵反比例函數(shù)y2=(k2≠0)的圖象過點A(4,1),

k2=4×1=4,

∴反比例函數(shù)的解析式為y2=,

∵點B(n,﹣2)在反比例函數(shù)y2=的圖象上,

n=4÷(﹣2)=﹣2,

∴點B的坐標(biāo)為(﹣2,﹣2),

A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,

,解得:,

∴一次函數(shù)的解析式為y=x﹣1;

(2)觀察函數(shù)圖象,可知:當(dāng)x<﹣20<x<4時,一次函數(shù)圖象在反比例函數(shù)圖象下方,

y1<y2x的取值范圍為x<﹣20<x<4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用2700元購進(jìn)甲、乙兩種商品共100件,這兩種商品的進(jìn)價、標(biāo)價如下表所示:

甲種

乙種

進(jìn)價(元/件)

15

35

標(biāo)價(元/件)

20

45

(1)求購進(jìn)兩種商品各多少件?

(2)商品將兩種商品全部賣出后,獲得的利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉(zhuǎn)60°得到線段AM,連接FM.

(1)求AO的長;

(2)如圖2,當(dāng)點F在線段BO上,且點M,F(xiàn),C三點在同一條直線上時,求證:AC=AM;

(3)連接EM,若AEM的面積為40,請直接寫出AFM的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線C1的頂點為G.

(1)求出拋物線C1的解析式,并寫出點G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個單位,得到拋物線C2,設(shè)C2與x軸的交點為A′、B′,頂點為G′,當(dāng)A′B′G′是等邊三角形時,求k的值:

(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線C1、C2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與AOQ全等,若存在,直接寫出點M,N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°,AB=10,BC=8,DE△ABC的中位線.過點D、EDF∥EG,分別交BCF、G,沿DF將△BDF剪下,并順時針旋轉(zhuǎn)180°與△AMD重疊,沿EG將△CEG剪下,并逆時針旋轉(zhuǎn)180°與△ANE重疊,則四邊形MFGN周長的最小值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為 BC上的點,F(xiàn)為 CD邊上的點,且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則yx之間的函數(shù)關(guān)系式是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對話,解答問題:

1)分別用ab表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請用樹狀圖法或列表法寫出(ab)的所有取值;

2)求在(a,b)中使關(guān)于x的一元二次方程x2﹣ax+2b=0有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,已知的直徑AB=12cm,AC是的弦,過點C作的切線交BA的延長線于點P,連接BC

(1)求證:PCA=B

(2)已知P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當(dāng)ABQ與ABC的面積相等時,求動點Q所經(jīng)過的弧長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是____________.

查看答案和解析>>

同步練習(xí)冊答案