(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

【答案】分析:(1)根據(jù)圖形,易得點(diǎn)A、B、C、D的坐標(biāo);進(jìn)而可得拋物線上三點(diǎn)D、M、N的坐標(biāo),將其代入解析式,求可得解析式;
(2)有(1)的解析式,可得頂點(diǎn)坐標(biāo),即OE、DE的長,易得△BFD∽△EOD,再由EF=FD-DE的關(guān)系代入數(shù)值可得答案;(3)首先根據(jù)CD的坐標(biāo)求出CD的直線方程,在根據(jù)切線的性質(zhì),可求得P的坐標(biāo),進(jìn)而可得P是否在拋物線上.
解答:解:(1)∵圓心O在坐標(biāo)原點(diǎn),圓O的半徑為1
∴點(diǎn)A、B、C、D的坐標(biāo)分別為A(-1,0)、B(0,-1)、C(1,0)、D(0,1)
∵拋物線與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C
∴M(-1,-1)、N(1,1)
∵點(diǎn)D、M、N在拋物線上,將D(0,1)、M(-1,-1)、N(1,1)的坐標(biāo)代入y=ax2+bx+c,
得:
解之,得:
∴拋物線的解析式為y=-x2+x+1.

(2)∵y=-x2+x+1=-(x-2+
∴拋物線的對稱軸為
∴OE=,DE=
連接BF,則∠BFD=90°
∴△BFD∽△EOD

又DE=,OD=1,DB=2
∴FD=
∴EF=FD-DE=

(3)點(diǎn)P在拋物線上.
設(shè)過D、C點(diǎn)的直線為y=kx+b
將點(diǎn)C(1,0)、D(0,1)的坐標(biāo)代入y=kx+b,得
k=-1,b=1
∴直線DC為y=-x+1
過點(diǎn)B作圓O的切線BP與x軸平行,P點(diǎn)的縱坐標(biāo)為y=-1
將y=-1代入y=-x+1,得x=2
∴P點(diǎn)的坐標(biāo)為(2,-1)
當(dāng)x=2時,y=-x2+x+1=-22+2+1=-1
所以,P點(diǎn)在拋物線y=-x2+x+1上.
點(diǎn)評:本題考查學(xué)生將二次函數(shù)的圖象與圓的位置關(guān)系,要求學(xué)生將圖象與解析式互相結(jié)合分析、處理問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省鹽城市初級中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市枝江市雅畈中學(xué)九年級中考數(shù)學(xué)強(qiáng)化訓(xùn)練專題3 二次函數(shù)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)模擬試卷(06)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點(diǎn)E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點(diǎn)B作圓O的切線交DC的延長線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說明理由.

查看答案和解析>>

同步練習(xí)冊答案