【題目】折紙的思考.
用一張矩形紙片折等邊三角形.
第一步,對(duì)折矩形紙片ABCD(AB>BC)(圖①),使AB與DC重合,得到折痕EF,把紙片展平(圖②).
第二步,如圖③,再一次折疊紙片,使點(diǎn)C落在EF上的P處,并使折痕經(jīng)過點(diǎn)B,得到折痕BG,折出PB,PC,得到△PBC.
(1)說明△PBC是等邊三角形.
(2)如圖④,小明畫出了圖③的矩形ABCD和等邊三角形PBC,他發(fā)現(xiàn),在矩形ABCD中把△PBC經(jīng)過圖形變化,可以得到圖⑤中的更大的等邊三角形,請(qǐng)描述圖形變化的過程.
(3)已知矩形一邊長為3cm,另一邊長為a cm,對(duì)于每一個(gè)確定的a的值,在矩形中都能畫出最大的等邊三角形,請(qǐng)畫出不同情形的示意圖,并寫出對(duì)應(yīng)的a的取值范圍.
(4)用一張正方形鐵片剪一個(gè)直角邊長分別為4cm和1cm的直角三角形鐵片,求所需正方形鐵片的邊長的最小值.
【答案】
(1)
證明:由折疊的性質(zhì)得:EF是BC的垂直平分線,BG是PC的垂直平分線,
∴PB=PC,PB=CB,
∴PB=PC=CB,
∴△PBC是等邊三角形
(2)
解:以 點(diǎn)B為中心,在矩形ABCD中把△PBC逆時(shí)針方向旋轉(zhuǎn)適當(dāng)?shù)慕嵌,得到△P1BC1;
再以點(diǎn)B為位似中心,將△△P1BC1放大,使點(diǎn)C1的對(duì)稱點(diǎn)C2落在CD上,得到△P2BC2;
如圖⑤所示
(3)
解:本題答案不唯一,舉例如圖⑥所示
(4)
解:如圖⑦所示:
△CEF是直角三角形,∠CEF=90°,CE=4,EF=1,
∴∠AEF+∠CED=90°,
∵四邊形ABCD是正方形,
∴∠A=∠D=90°,AD=CD,
∴∠DCE+∠CED=90°,
∴∠AEF=∠DCE,
∴△AEF∽△DCE,
∴ = ,
設(shè)AE=x,則AD=CD=4x,
∴DE=AD﹣AE=3x,
在Rt△CDE中,由勾股定理得:(3x)2+(4x)2=42,
解得:x= ,
∴AD=4× = ;
故答案為: .
【解析】(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)由旋轉(zhuǎn)的性質(zhì)和位似的性質(zhì)即可得出答案;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進(jìn)行計(jì)算,畫出圖形即可;(4)證明△AEF∽△DCE,得出 = ,設(shè)AE=x,則AD=CD=4x,DE=AD﹣AE=3x,在Rt△CDE中,由勾股定理得出方程,解方程即可.
【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì)和勾股定理的概念,需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c的頂點(diǎn)為D(﹣1,﹣4),與y軸交于點(diǎn)C(0,﹣3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的解析式;
(2)連接AC,CD,AD,試證明△ACD為直角三角形;
(3)若點(diǎn)E在拋物線的對(duì)稱軸上,拋物線上是否存在點(diǎn)F,使以A,B,E,F(xiàn)為頂點(diǎn)的四邊形為平行四邊形?若存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算結(jié)果正確的是( )
A. ﹣ =﹣
B.(﹣0.1)﹣2=0.01
C.( )2÷ =
D.(﹣m)3?m2=﹣m6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,已知AB=1,BC= ,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE翻折,得到多邊形AB′C′E,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′、C′.
(1)當(dāng)B′C′恰好經(jīng)過點(diǎn)D時(shí)(如圖1),求線段CE的長;
(2)若B′C′分別交邊AD,CD于點(diǎn)F,G,且∠DAE=22.5°(如圖2),求△DFG的面積;
(3)在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過程中,求點(diǎn)C′運(yùn)動(dòng)的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“直角”在初中幾何學(xué)習(xí)中無處不在. 如圖,已知∠AOB,請(qǐng)仿照小麗的方式,再用兩種不同的方法判斷∠AOB是否為直角(僅限用直尺和圓規(guī)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△EBC是等邊三角形.
(1)求證:△ABE≌△DCE;
(2)求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個(gè)正方形和2個(gè)長方形后仍是中心對(duì)稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測(cè)量就能知道周長的圖形的標(biāo)號(hào)為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A.如圖1,展開后測(cè)得∠1=∠2
B.如圖2,展開后測(cè)得∠1=∠2且∠3=∠4
C.如圖3,測(cè)得∠1=∠2
D.如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)古代車輪的碎片,小明為求其外圓半徑,連結(jié)外圓上的兩點(diǎn)A、B,并使AB與車輪內(nèi)圓相切于點(diǎn)D,做CD⊥AB交外圓于點(diǎn)C.測(cè)得CD=10cm,AB=60cm,則這個(gè)車輪的外圓半徑為cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com