當(dāng)a<0時(shí),可以化簡為________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料并解決有關(guān)問題:
我們知道,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對(duì)值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時(shí),可令x+1=0和x-2=O,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=-1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)x<-1;(2)-1≤x<2;(3)x≥2.從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當(dāng)x<-1時(shí),原式=-(x+1)-(x-2)=-2x+1;
(2)當(dāng)-1≤x<2時(shí),原式=x+1-(x-2)=3;
(3)當(dāng)x≥2時(shí),原式=x+1+x-2=2x-1.
綜上討論,原式=
-2x+1(x<-1)
3(-1≤x<2)
2x-1(x≥2)

通過以上閱讀,請(qǐng)你解決以下問題:
(1)分別求出|x+2|和|x-4|的零點(diǎn)值;
(2)化簡代數(shù)式|x+2|+|x-4|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(經(jīng)典回放)當(dāng)a<0時(shí),
3a3
+
a2-2a+1
可以化簡為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)分類討論是一種重要的數(shù)學(xué)思想,比如要在實(shí)數(shù)范圍內(nèi)化簡|x-1|可以按x與1的大小關(guān)系分三種情況討論:
①當(dāng)x>1時(shí),x-1>0,則|x-1|=x-1.
②當(dāng)x=1時(shí),x-1=0,則|x-1|=0.
③當(dāng)x<1時(shí),x-1<0,則|x-1|=
1-x
1-x

(2)請(qǐng)根據(jù)以上思想,在實(shí)數(shù)范圍內(nèi)比較代數(shù)式a與
1a
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)1≤x≤2時(shí),代數(shù)式可以化簡為( )。

(A)0 (B)2 (C)2 (D)-2

查看答案和解析>>

同步練習(xí)冊(cè)答案