我們把一個(gè)半圓與拋物線(xiàn)的一部分合成的封閉圖形稱(chēng)為“蛋圓”,如果一條直線(xiàn)與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線(xiàn)叫做“蛋圓”的切線(xiàn).如圖,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請(qǐng)你求出“蛋圓”拋物線(xiàn)部分的解析式,并寫(xiě)出自變量的取值范圍;
(2)開(kāi)動(dòng)腦筋想一想,相信你能求出經(jīng)過(guò)點(diǎn)D的“蛋圓”切線(xiàn)的解析式.
(3)如果直線(xiàn)x=m在線(xiàn)段OB上移動(dòng),交x軸于點(diǎn)D,交拋物線(xiàn)于點(diǎn)E,交BD于點(diǎn)F.連接DE和BE后,對(duì)于問(wèn)題“是否存在這樣的點(diǎn)E,使△BDE的面積最大?”小明同學(xué)認(rèn)為:“當(dāng)E為拋物線(xiàn)的頂點(diǎn)時(shí),△BDE的面積最大.”他的觀(guān)點(diǎn)是否
正確?提出你的見(jiàn)解,若△BDE的面積存在最大值,請(qǐng)求出m的值以及點(diǎn)E的坐標(biāo).