【題目】如圖,在正方形ABCD中,點E,F分別在BC,CD上,AEAF,ACEF相交于點G.下列結論:①AC垂直平分EF;②BE+DFEF;③當∠DAF15°時,△AEF為等邊三角形;④當∠EAF60°時,SABESCEF.其中正確的是( 。

A. ①③B. ②④C. ①③④D. ②③④

【答案】C

【解析】

①通過條件可以得出ABE≌△ADF,從而得出∠BAE=DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF

②設BC=x,CE=y,由勾股定理就可以得出EFx、y的關系,表示出BEEF,即可判斷BE+DFEF關系不確定;

③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷EAF為等邊三角形,

④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出xy的關系,表示出BEEF,利用三角形的面積公式分別表示出SCEFSABE,再通過比較大小就可以得出結論.

①四邊形ABCD是正方形,

AB═AD,∠B=D=90°

RtABERtADF中,

,

RtABERtADFHL),

BE=DF

BC=CD

BC-BE=CD-DF,即CE=CF,

AE=AF,

AC垂直平分EF.(故①正確).

②設BC=a,CE=y,

BE+DF=2a-y

EF=y

BE+DFEF關系不確定,只有當y=2a時成立,(故②錯誤).

③當∠DAF=15°時,

RtABERtADF,

∴∠DAF=BAE=15°,

∴∠EAF=90°-2×15°=60°,

又∵AE=AF

∴△AEF為等邊三角形.(故③正確).

④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:

(x+y)2+y2(x)2

x2=2yx+y

SCEF=x2,SABE=y(x+y),

SABE=SCEF.(故④正確).

綜上所述,正確的有①③④,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小堯用描點法畫二次函數(shù) 圖像,列表如下:

x

4

3

2

1

0

1

2

y

5

0

3

4

3

0

5

1)由于粗心,小堯算錯了其中的一個 y值,請你指出這個算錯的y值所對應的 x ;

2)在圖中畫出這個二次函數(shù)的圖像;

3)當 y≥5 時,x 的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的出行方式,隨機從全校2000名學生中抽取了300名學生進行調(diào)查,并根據(jù)調(diào)查結果繪制如下條形統(tǒng)計圖,下列說法不正確的是(  )

A.樣本中步行人數(shù)最少

B.本次抽樣的樣本容量是300

C.樣本中坐公共汽車的人數(shù)占調(diào)查人數(shù)的50%

D.全校步行、騎自行車的人數(shù)的總和與坐公共汽車的人數(shù)一定相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,∠A=90°,BD=BCCEBDE

1)求證:BE=AD;(2)若∠DCE=15°,AB=2,求在四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:

例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:

1)已知點P(3,-2).

①若點A(-2,-1),則d(PA)= ;

②若點B(b,2),且d(P,B)=5,則b= ;

③已知點Cm,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.

2)⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去揚州馬可波羅花世界游玩.

小明和小剛都在本周日上午去游玩的概率為________;

求他們?nèi)嗽谕粋半天去游玩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時,滿足的折射定律如圖①所示:折射率代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設計了圖②所示的實驗;通過細管可以看見水底的物塊,但從細管穿過的直鐵絲,卻碰不上物塊,圖③是實驗的示意圖,點A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點M02)的直線lx軸平行,且直線l分別與反比例函數(shù)yx0)和yx0)的圖象分別交于點P,Q

1)求P點的坐標;

2)若POQ的面積為9,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4 的四張撲克牌背面朝上,洗勻后放在桌面上.

(1)從中隨機抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____

(2)先從中隨機抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是 4 的倍數(shù)的概率.

查看答案和解析>>

同步練習冊答案