【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全市知識(shí)競(jìng)賽,在最近的五次選拔測(cè)試中,他倆的成績(jī)分別如下表:

次數(shù)

1

2

3

4

5

小王

60

75

100

90

75

小李

70

90

100

80

80

根據(jù)上表解答下列問(wèn)題:

(1)完成下表:

姓名

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

80

75

75

190

小李

(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是誰(shuí)?若將80分以上(含80分)的成績(jī)視為優(yōu)秀,則小王、小李在這五次測(cè)試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為選誰(shuí)參加比賽比較合適?說(shuō)明你的理由.

【答案】(1)84 80 80 104;(2).小王的優(yōu)秀率為40%.小李的優(yōu)秀率為80%;(3)小李,理由見(jiàn)解析

【解析】試題分析:(1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差的概念即公式即可得出答案;(2)根據(jù)方差的意義即方差反映數(shù)據(jù)的波動(dòng)程度,得出方差越小越穩(wěn)定,應(yīng)此小李的成績(jī)穩(wěn)定;根據(jù)表中的數(shù)據(jù)分別計(jì)算優(yōu)秀率即可;(3)因?yàn)樾±畹某煽?jī)比小王的成績(jī)穩(wěn)定,且優(yōu)秀率比小王的高,因此選小李參加比賽比較合適

試題解析:

(1)84,80,80,104;

(2)因?yàn)樾⊥醯姆讲钍?90,小李的方差是104,而104<190,所以小李成績(jī)較穩(wěn)定.小王的優(yōu)秀率為×100%=40%.小李的優(yōu)秀率為×100%=80%.

(3)因?yàn)樾±畹某煽?jī)比小王的成績(jī)穩(wěn)定,且優(yōu)秀率比小王的高,因此選小李參加比賽比較合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作BAD的平分線(xiàn)AG交BC于點(diǎn)E,若BF=12,AB=10,則AE的長(zhǎng)為( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把15°30′化成度的形式,則15°30′=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m+n=2,mn=-2,(2-m)(2-n)的值為(  )

A. 2 B. -2 C. 0 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(2x)(x3x+1)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)的頂點(diǎn)坐標(biāo)為C(0,8),并且經(jīng)過(guò)A(8,0),點(diǎn)P是拋物線(xiàn)上點(diǎn)A,C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過(guò)點(diǎn)P作直線(xiàn)y=8的垂線(xiàn),垂足為點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(0,6),(4,0),連接PD,PE,DE.

(1)求拋物線(xiàn)的解析式;

(2)猜想并探究:對(duì)于任意一點(diǎn)P,PD與PF的差是否為固定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說(shuō)明理由;

(3)求:①當(dāng)△PDE的周長(zhǎng)最小時(shí)的點(diǎn)P坐標(biāo);②使△PDE的面積為整數(shù)的點(diǎn)P的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各式因式分解

(1)4x3﹣16xy2;

(2)(x2﹣2x)2+2(x2﹣2x)+1;

(3)a4﹣16;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.

(1)求證:HEA=CGF;

(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的頂點(diǎn)M是直線(xiàn)=-和直線(xiàn)的交點(diǎn).

(1)若直線(xiàn)過(guò)點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;

(2)試證明無(wú)論取任何值,二次函數(shù)的圖象與直線(xiàn)總有兩個(gè)不同的交點(diǎn);

(3)在(1)的條件下,若二次函數(shù)的圖象與軸交于點(diǎn)C,與的右交點(diǎn)為A,試在直線(xiàn)=-上求異于M的點(diǎn)P,使P在△CMA的外接圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案