【題目】已知二次函數(shù)圖象的頂點坐標是(-1,2),且過點(0, ).
(1)求二次函數(shù)的解析式,并在圖中畫出它的圖象;
(2)求證:對任意實數(shù)m,點M(m,-m2)都不在這個二次函數(shù)的圖象上.
【答案】(1)解析式為y=- (x+1)2+2,畫圖象略; (2)點M(m,-m2)都不在這個二次函數(shù)的圖象上.
【解析】試題分析:(1)可設(shè)此二次函數(shù)的表達式為y=a(x+1)2+2,把點(0, )代入即可解得a值,所以y=-(x+1)2+2,作圖即可;
(2)把點M(m,-m2)代入二次函數(shù)解析式,通過等式左右是否相等判斷是否在二次函數(shù)圖象上.
試題解析: (1)依題意可設(shè)此二次函數(shù)的表達式為y=a(x+1)2+2,
又點(0, )在它的圖象上,
所以=a+2,解得,a=,
所求為y= (x+1)2+2,或y=x2x+.
令y=0,得x1=1,x2=3,
畫出其圖象
;
(2)證明:若點M在此二次函數(shù)的圖象上,
則m2= (m+1)2+2,
得m22m+3=0,
方程的判別式:412=8<0,該方程無實根,
所以,對任意實數(shù)m,點M(m,m2)都不在這個二次函數(shù)的圖象上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同開鑿一條隧道,甲隊按一定的工作效率先施工,一段時間后,乙隊從隧道的另一端按一定的工作效率加入施工,中途乙隊遇到碎石層,工作效率降低,當(dāng)乙隊完成碎石層時恰好隧道被打通,此時甲隊工作了天,設(shè)甲、乙兩隊各自開鑿隧道的長度為(米),工作時間為(天),與之間的函數(shù)圖像如圖所示,下列說法:
①甲每天開鑿隧道米;
②這條隧道總長為米;
③當(dāng)乙遇上碎石層時,甲恰好開鑿隧道米,
④若乙在甲施工天后開始施工,則乙在遇到碎石層之前的施工速度比之后快米/天,其中正確的有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時針旋轉(zhuǎn)一定角度后與△ADE重合,且點C恰好成為AD的中點.
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中AC平分∠BAD,∠ADC=∠ACB=90,E為AB的中點,AC與DE交于點F.
(1)求證: =AB·AD;
(2)求證:CE//AD;
(3)若AD=6, AB=8.求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=a(x+c)2的圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將豎直放置的長方形磚塊ABCD推倒至長方形A'B'C'D'的位置,長方形ABCD的長和寬分別為a,b,AC的長為c.
(1)你能用只含a,b的代數(shù)式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA嗎?能用只含c的代數(shù)式表示S△ACA'嗎?
(2)利用(1)的結(jié)論,你能驗證勾股定理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0;⑤4ac﹣b2<0,正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個盒子中裝有質(zhì)地、大小相同的小球,甲盒中有個白球、個藍球;乙盒中有個白球、若干個藍球,從乙盒中任意摸取一球為藍球的概率是從甲盒中任意摸取一球為藍球的概率的倍.
()求乙盒中藍球的個數(shù).
()從甲、乙兩盒中分別任意摸取一球,求這兩球均為藍球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(-4,0),B(2,6)兩點.
(1)求一次函數(shù)y=kx+b的表達式;
(2)在直角坐標系中,畫出這個函數(shù)的圖象;
(3)求這個一次函數(shù)與坐標軸圍成的三角形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com