【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,與AC交于點D,點O是AB上一點,⊙O過B、D兩點,且分別交AB、BC于點E、F.

(1)求證:AC是⊙O的切線;
(2)已知AB=10,BC=6,求⊙O的半徑r

【答案】
(1)證明:連接OD.

∵OB=OD,

∴∠OBD=∠ODB(等角對等邊);

∵BD平分∠ABC,

∴∠ABD=∠DBC,

∴∠ODB=∠DBC(等量代換),

∴OD∥BC(內(nèi)錯角相等,兩直線平行);

又∵∠C=90°(已知),

∴∠ADO=90°(兩直線平行,同位角相等),

∴AC⊥OD,即AC是⊙O的切線;


(2)解:由(1)知,OD∥BC,

(平行線截線段成比例),

,

解得r= ,即⊙O的半徑r為


【解析】根據(jù)等角對等邊得到∠OBD=∠ODB,由角平分線的定義和等量代換,得到兩直線平行,根據(jù)兩直線平行,同位角相等得到AC是⊙O的切線;(2)由(1)知,OD∥BC,根據(jù)平行線截線段成比例定理,兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例;求出⊙O的半徑.
【考點精析】認真審題,首先需要了解切線的判定定理(切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線),還要掌握平行線分線段成比例(三條平行線截兩條直線,所得的對應(yīng)線段成比例)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BD∠ABC的角平分線,DE//BC,交ABE,∠A=55°,∠BDC=95°,求△BDE各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的高,直線相交所成的角中有一個角為50°,則的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與坐標軸交于A,B兩點,則一元二次方程x2+bx+c=0的根的情況是( )

A.沒有實數(shù)根
B.有兩個相等的實數(shù)根
C.有兩個不相等的實數(shù)根
D.可能有實數(shù)根,也可能沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動,設(shè)∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關(guān)系圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,OE平分∠AODOFOE,OGCD,∠CDO50°,則下列結(jié)論:①∠AOE65°;②OF平分∠BOD;③∠GOE=∠DOF;④∠AOE=∠GOD.其中正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在直角坐標系中.

1)寫出點A,點B的坐標A        ),B        );

2SABC=    ;

3)若把ABC向上平移2個單位,再向右平移2個單位得A1B1C1,在圖中畫出A1B1C1的位置,并寫出點A1、B1、C1的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題1:現(xiàn)有一張△ABC紙片,點DE分別是△ABC邊上兩點,若沿直線DE折疊.

1)探究1:如果折成圖①的形狀,使A點落在CE上,則∠1與∠A的數(shù)量關(guān)系是 ;

2)探究2:如果折成圖②的形狀,猜想∠1+∠2和∠A的數(shù)量關(guān)系是 ;

3)探究3:如果折成圖③的形狀,猜想∠1、∠2和∠A的數(shù)量關(guān)系,并說明理由.

4)問題2:將問題1推廣,如圖④,將四邊形ABCD紙片沿EF折疊,使點A、B落在四邊形EFCD的內(nèi)部時,∠1+∠2與∠A、∠B之間的數(shù)量關(guān)系是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(×(-6)+(-2÷(-3

2)-12018-(10.5××[2-(-33]

3)(-121)÷(-).

查看答案和解析>>

同步練習冊答案