如圖,CD是Rt△ABC斜邊上的高,AC=4,BC=3,則cos∠BCD=   
【答案】分析:根據(jù)勾股定理求出斜邊AB;證明∠BCD=∠A,在△ABC中求cosA得解.
解答:解:∵CD是Rt△ABC斜邊上的高,AC=4,BC=3,
∴AB==5.
∵∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠A.
∴cos∠BCD=cosA=
點評:本題利用了勾股定理及三角函數(shù)的定義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

5、如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于
30
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊上的高線,若sinA=
3
3
,BD=1,則AD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊上的高.若AB=5,AC=3,則tan∠BCD為( 。
A、
4
3
B、
3
4
C、
4
5
D、
3
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊AB上的高,直角邊AC=2
3
,現(xiàn)將△BCD沿CD折疊,B點恰好落在AB的中點E處,則陰影部分的面積等于
 

查看答案和解析>>

同步練習冊答案