如圖,已知△ABC中,AB=AC=13cm,BC=10cm,以AB為直徑作⊙O交BC于D,交AC于E.過D作DF⊥AC,垂足為F.
(1)求證:DF是⊙O的切線;
(2)求四邊形ABDE的面積.

(1)證明:連接AD.
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BC.
又AB=AC=13,BC=10,D是BC的中點,
∴BD=5.
連接OD;
由中位線定理,知DO∥AC,
又DF⊥AC,
∴DF⊥OD.
∴DF是⊙O的切線.

(2)解:由割線定理,得CE•CA=CD•CB,即
CE×13=5×10,得CE=
∵S△ACD=AD•DC=AC•DF,即13•DF=12×5,
∴DF=,
∴S四邊形ABDE=S△ABC-S△DCE=×10×12-××=
分析:(1)連接AD、OD,則AD⊥BC,D為BC中點.OD為中位線,則OD∥AC,根據(jù)DF⊥AC可得OD⊥DF.得證;
(2)S四邊形ABDE=S△ABC-S△DCE.易求S△ABC,關鍵求S△DCE.根據(jù)切割線定理可求CE;根據(jù)等積法可求DF.則可求S△DCE
點評:此題考查了切線的判定、圖形的面積計算等知識點,難度中等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設E到BC的距離為x,△DEF的面積為y,那么y關于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結論不正確的是( 。

查看答案和解析>>

同步練習冊答案