【題目】將拋物線y=x2向左平移2個(gè)單位,再向下平移1個(gè)單位,所得拋物線為( 。
A. y=(x﹣2)2﹣1 B. y=(x﹣2)2+1 C. y=(x+2)2﹣1 D. y=(x+2)2+1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解,我們把依次連接任意一個(gè)四邊形各邊中點(diǎn)得到的四邊形叫中點(diǎn)四邊形,如圖1,在四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn),依次連接各邊中點(diǎn)得到中點(diǎn)四邊形EFGH.
(1)這個(gè)中點(diǎn)四邊形EFGH的形狀是;
(2)如圖2,在四邊形ABCD中,點(diǎn)M在AB上且△AMD和△MCB為等邊三角形,E、F、G、H分別為AB、BC、CD、AD的中點(diǎn),試判斷四邊形EFGH的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由兩個(gè)長(zhǎng)為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15
B.16
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】變形與求值
(1)通分: , .
(2)求值: ,其中x=1,y=﹣ .
(3)不改變分式的值,變形使分式 的分子與分母的最高次項(xiàng)的系數(shù)是正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線.
(1)畫圖:延長(zhǎng)AD到E,使ED=AD,連接BE、CE;
(2)四邊形ABEC是平行四邊形嗎?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=4(x﹣3)2+7,開(kāi)口_____,對(duì)稱軸為_____,頂點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上.圓心在P(a,b),半徑為r的圓的方程可以寫為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;
(2)根據(jù)以上材料解決以下問(wèn)題:
如圖2,以B(-6,0)為圓心的圓與y軸相切于原點(diǎn),C是☉B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長(zhǎng)BD交y軸于點(diǎn)E,已知sin∠AOC=.
①連接EC,證明EC是☉B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO,若存在,求P點(diǎn)坐標(biāo),并寫出以P為圓心,以PB為半徑的☉P的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面內(nèi)的點(diǎn)A(-2,5),若將平面直角坐標(biāo)系先向右平移3個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度,則點(diǎn)A在平移后的坐標(biāo)系中的坐標(biāo)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com