【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點(diǎn)D交BE 于H,O是EG的中點(diǎn),對(duì)于下面四個(gè)結(jié)論:①GH⊥BE;②OH∥BG,且;③;④△EBG的外接圓圓心和它的內(nèi)切圓圓心都在直線HG上.其中表述正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】D
【解析】
①由四邊形ABCD是正方形,△ECG是等腰直角三角形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,從而得出GH⊥BE;
②由GH是∠EGC的平分線,得出△BGH≌△EGH,再由O是EG的中點(diǎn),利用中位線定理,得出OH∥BG,且;
③由(2)得BG=EG,設(shè)CG=x,則CE=x,根據(jù)勾股定理得EG=x,所以BG=x,從而得到BC=(-1)x,根據(jù)正方形面積公式和等腰直角三角形面積公式可以得到S正方形ABCD=(3-2)x2,S△ECG=x2,進(jìn)而求出;
④三角形的外接圓的圓心是三條邊的垂直平分線的交點(diǎn),三角形的內(nèi)切圓是的圓心是三個(gè)角的平分線的交點(diǎn).由(2)得BG=EG,由(1)得GH⊥BE,因?yàn)?/span>GH平分∠BGE,所以GH是BE邊上的垂直平分線,所以△EBG的外接圓圓心和內(nèi)切圓圓心在直線HG上.
解:①∵四邊形ABCD是正方形,△ECG是等腰直角三角形
∴BC=CD,CE=CG,∠BCE=∠DCG=90°
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS)
∴∠BEC=∠BGH
∵∠BGH+∠CDG=90°,∠CDG=∠HDE
∴∠BEC+∠HDE=90°
∴GH⊥BE
故①正確;
②∵GH是∠EGC的平分線
∴∠BGH=∠EGH
在△BGH和△EGH中,
∴△BGH≌△EGH(ASA)
∴BH=EH
∵O是EG的中點(diǎn)
∴HO是△EBG的中位線
∴OH∥BG,且
故②正確;
③由(2)得△BGH≌△EGH
∴BG=EG
在等腰直角三角形ECG中,設(shè)CG=x,則CE=x
∴EG==x
∴BG=x
∴BC=BG-CG=x-x=(-1)x
∴S正方形ABCD=BC2=[(-1)x]2 =(3-2)x2
S△ECG=CGCE=x2
∴S正方形ABCD∶S△ECG=(3-2)x2∶x2=(6-4)∶1
故③正確;
④由(2)得BG=EG,由(1)得GH⊥BE
∵GH平分∠BGE,
∴GH是BE邊上的垂直平分線
∵三角形的外接圓的圓心是三條邊的垂直平分線的交點(diǎn),三角形的內(nèi)切圓是的圓心是三個(gè)角的平分線的交點(diǎn).
∴△EBG的外接圓圓心和內(nèi)切圓圓心在直線HG上
故④正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,點(diǎn)均在格點(diǎn)上,為小正方形邊中點(diǎn).
(1)的長(zhǎng)等于 ______;
(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)點(diǎn),使其滿足說明點(diǎn)的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點(diǎn),設(shè)該拋物線與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為D,連接CD交x軸于點(diǎn)E.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求該拋物線的對(duì)稱軸和D點(diǎn)坐標(biāo);
(3)點(diǎn)F,G是對(duì)稱軸上兩個(gè)動(dòng)點(diǎn),且FG=2,點(diǎn)F在點(diǎn)G的上方,請(qǐng)直接寫出四邊形ACFG的周長(zhǎng)的最小值;
(4)連接BD,若P在y軸上,且∠PBC=∠DBA+∠DCB,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD邊長(zhǎng)為4,∠A=60°,M是AD邊的中點(diǎn),N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則A′C的最小值是( )
A.2B.+1C.2﹣2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖,AD與地面的夾角為60°,為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°變成37°,因此傳送帶的落地點(diǎn)由點(diǎn)B到點(diǎn)C向前移動(dòng)了2米.
(1)求點(diǎn)A與地面的高度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米,那么請(qǐng)判斷距離D點(diǎn)14米的貨物2是否需要挪走,并說明理由.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張用4張相同的小紙條做成甲、乙、丙、丁4支簽,放在一個(gè)盒子中,攪勻后先從盒子中任意抽出1支簽(不放回),再?gòu)氖S嗟?/span>3支簽中任意抽出1支簽.
(1)小張第一次抽到的是乙簽的概率是 ;
(2)求抽出的兩支簽中,1支為甲簽、1支為丙簽的概率(用畫樹狀圖或列表法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是AB邊上一動(dòng)點(diǎn),連接 PD,PE,則PD+PE長(zhǎng)度的最小值為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長(zhǎng)度;
(3)當(dāng)△PBQ為等腰三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形頂點(diǎn)在函數(shù)的圖象上,函數(shù)的圖象關(guān)于直線對(duì)稱,且經(jīng)過點(diǎn),兩點(diǎn),若,,則的值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com