【題目】綜合與探究
如圖1,拋物線y=ax2+bx﹣3與x軸交于A(﹣2,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)N是拋物線上異于點(diǎn)C的動(dòng)點(diǎn),若△NAB的面積與△CAB的面積相等,求出點(diǎn)N的坐標(biāo);
(3)如圖2,當(dāng)P為OB的中點(diǎn)時(shí),過(guò)點(diǎn)P作PD⊥x軸,交拋物線于點(diǎn)D.連接BD,將△PBD沿x軸向左平移m個(gè)單位長(zhǎng)度(0<m≤2),將平移過(guò)程中△PBD與△OBC重疊部分的面積記為S,求S與m的函數(shù)關(guān)系式.
【答案】(1)y=x2﹣x﹣3;(2)點(diǎn)N的坐標(biāo)是(+1,3)或(﹣+1,3)或(2,﹣3);(3)S=﹣m2+m+.
【解析】
(1)把點(diǎn)A、B的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b的解析式,通過(guò)解方程組求得它們的值;
(2)由拋物線解析式求得點(diǎn)C的坐標(biāo),即OC=3,所以由三角形的面積公式得到點(diǎn)N到x軸的距離為3,據(jù)此列出方程并解答;
(3)如圖2,由已知得,QB=m,PQ=2,利用待定系數(shù)法確定直線BC的表達(dá)式為y=x﹣3.根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和坐標(biāo)與圖形的性質(zhì)求得D(2,﹣3),所以直線CD∥x軸.由此求得EM的長(zhǎng)度;過(guò)點(diǎn)F作FH⊥PM于點(diǎn)M,構(gòu)造相似三角形:△MHF∽△MPQ和△CMF∽△BQF,根據(jù)相似三角形的對(duì)應(yīng)邊成比例推知=.設(shè)MF=k(2﹣m),QF=km,由三角形的面積公式和圖形得到:S=S△PQM﹣S△EMF=3﹣(﹣m+)(2﹣m)=﹣m2+m+.
解:(1)如圖1,把點(diǎn)A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得
,
解得,
所以該拋物線的解析式為:y=x2﹣x﹣3;
(2)將x=0代入y=x2﹣x﹣3,得y=﹣3,
∴點(diǎn)C的坐標(biāo)為(0,﹣3),
∴OC=3.
設(shè)N(x,y),
∵S△NAB=S△CAB,
∴|y|=OC=3,
∴y=±3.
當(dāng)y=3時(shí),x2﹣x﹣3=3,
解得x=+1.
當(dāng)y=﹣3時(shí),x2﹣x﹣3=﹣3,
解得x1=2,x2=0(舍去).
綜上所述,點(diǎn)N的坐標(biāo)是(+1,3)或(﹣+1,3)或(2,﹣3);
(3)如圖2,由已知得,QB=m,PQ=2,
設(shè)直線BC的表達(dá)式為y=kx+b(k≠0).
∵直線y=kx+b經(jīng)過(guò)點(diǎn)B(4,0),C(0,﹣3),
∴,
解得,
∴直線BC的表達(dá)式為y=x﹣3.
當(dāng)0<m≤2時(shí),由已知得PB=2+m.
∵OP=2﹣m,
∴E(2﹣m,﹣m﹣).
由OB=4得OP=2,
把x=2代入y=x2﹣x﹣3中,得y=﹣3,
∴D(2,﹣3),
∴直線CD∥x軸.
∵EP=m+,MP=3,
∴EM=MP﹣EP=3﹣m﹣=﹣m+.
過(guò)點(diǎn)F作FH⊥PM于點(diǎn)M,則∠MHF=∠MPQ=90°.
∵∠HMF=∠PMQ,
∴△MHF∽△MPQ,
∴=.
∵∠FCM=∠FBQ,∠FMC=∠FQB,
∴△CMF∽△BQF,
∴=.
∵CD=2,
∴CM=2﹣m,
∴=.
設(shè)MF=k(2﹣m),QF=km,
∴MQ=2k,
∴=.
∴=.
∵PQ=2,
∴HF=2﹣m.
∴S△EMF=EMHF=(﹣m+)(2﹣m).
∵S△PQM=PQPM=×3×2=3,
∴S=S△PQM﹣S△EMF=3﹣(﹣m+)(2﹣m)=﹣ m2+ m+ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BCA=90°,D為AC邊上一動(dòng)點(diǎn),O為BD中點(diǎn),DE⊥AB,垂足為E,連結(jié)OE,CO,延長(zhǎng)CO交AB于F,設(shè)∠BAC=α,則( 。
A.∠EOF=αB.∠EOF=2α
C.∠EOF=180°﹣αD.∠EOF=180°﹣2α
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y1=2kx+k與函數(shù),定義新函數(shù)y=y2﹣y1
(1)若k=2,則新函數(shù)y= ;
(2)若新函數(shù)y的解析式為y=x2+bx﹣2,則k= ,b= ;
(3)設(shè)新函數(shù)y頂點(diǎn)為(m,n).
①當(dāng)k為何值時(shí),n有大值,并求出最大值;
②求n與m的函數(shù)解析式;
(4)請(qǐng)你探究:函數(shù)y1與新函數(shù)y分別經(jīng)過(guò)定點(diǎn)B,A,函數(shù)的頂點(diǎn)為C,新函數(shù)y上存在一點(diǎn)D,使得以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫(xiě)出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC.BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E.連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=.OE=2,求線段CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CE與DA的延長(zhǎng)線交于點(diǎn)E.連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四邊形AFOE:S△COD=2:3;以上四個(gè)結(jié)論中所有正確的結(jié)論是( 。
A.①②B.①②③C.②④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AEHC是由三個(gè)全等矩形拼成的,AH與BE、BF、DF、DG、CG分別交于點(diǎn)P、Q、K、M、N,設(shè)△BPQ、△DKM、△CNH的面積依次為、、.
(1)求證:△BPQ∽△DKM∽△CNH;
(2)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某次“小學(xué)生書(shū)法比賽”的成績(jī)情況,隨機(jī)抽取了30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)情況繪成如圖所示的頻數(shù)分布直方圖,己知成績(jī)x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問(wèn)題:
(1)圖中a的值為 ;
(2)若要繪制該樣本的扇形統(tǒng)計(jì)圖,則成績(jī)x在“70≤x<80”所對(duì)應(yīng)扇形的圓心角度數(shù)為 度;
(3)此次比賽共有300名學(xué)生參加,若將“x≥80”的成績(jī)記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有 人:
(4)在這些抽查的樣本中,小明的成績(jī)?yōu)?2分,若從成績(jī)?cè)凇?0≤x<60”和“90≤x<100”的學(xué)生中任選2人,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求小明被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推廣陽(yáng)光體育“大課間”活動(dòng),我市某中學(xué)決定在學(xué)生中開(kāi)設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有5張除正面數(shù)字外完全相同的卡片,正面數(shù)字分別為1,2,3,4,5,將卡片背面朝上洗勻,從中隨機(jī)抽出一張記下數(shù)字后放回,洗勻后再次隨機(jī)抽出一張,則抽出的兩張卡片上所寫(xiě)數(shù)字相同的概率______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com